

Genetic architecture of long QT syndrome and genotype-specific treatment
https://doi.org/10.33667/2078-5631-2025-4-7-14
Abstract
Congenital long QT syndrome (LQTS) is the first described and most common inherited arrhythmia in the absence of structural heart disease, which is inherited in a predominantly autosomal dominant manner, characterized by an increased risk of developing polymorphic ventricular tachycardia, syncope and/or seizures, and sudden cardiac death. According to modern ideas about the spectrum of genetic variants that can contribute to the genetic architecture of LQTS, this disease cannot be considered as a monogenic pathology. This is supported by the presence not only of pathogenic or likely pathogenic variants in the canonical LQTS susceptibility genes, but also of common potentially proarrhythmic variants or functional risk alleles and poorly penetrating rare variants. Since LQTS is a genetically and phenotypically heterogeneous disease, timely verification of the diagnosis of LQTS and risk stratification of arrhythmic events, as well as the implementation of a genotype-specific therapeutic strategy, seem relevant.
About the Authors
B. G. IskenderovRussian Federation
Iskenderov Bakhram G. - MD, professor, head of the Department of Therapy, Cardiology, Functional Diagnostics and Rheumatology.
Penza
E. A. Molokova
Russian Federation
Molokova Elena A. - PhD in Medical Sciences, associate professor of the Department of therapy, cardiology, functional diagnostics, and rheumatology.
Penza
I. N. Mozhzhukhina
Russian Federation
Mozhzhukhina Irina N. - PhD in Medical Sciences, head of the Department of roentgenology.
Penza
References
1. Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc Med. 2018; 28(7): 453–64. DOI: 10.1016/j.tcm.2018.03.003
2. Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020; 141:418–28. DOI: 10.1161/CIRCULATIONAHA.119.043132.
3. Offerhaus JA, Bezzina CR, Wilde AAM. Epidemiology of inherited arrhythmias. Nat Rev Cardiol. 2020; 17(4):205–15. DOI: 10.1038/s41569-019-0266-2
4. Tedeev T.G., Cherkashin D.V., Kutelev G.G., Kachnov V.A., Mirzoev N.T. The modern state of the problem of congenital long QT syndrome. Doctor.Ru. 2024;23(1):38–45. DOI: 10.31550/1727-2378-2024-23-1-38-45
5. Waddell-Smith KE, Skinner JR. Update on the diagnosis and management of familial long QT syndrome. Heart Lung Circ. 2016; 25(8):769–76. DOI: 10.1016/j.hlc.2016.01.020.
6. Fernandes DA, Camões GF, Ferreira D, Queijo C, Fontes-Ribeiro C, Gonçalves L, et al. Prevalence and risk factors for acquired long QT syndrome in the emergency department: a retrospective observational study. World J Emerg Med. 2023; 14(6):454-61. DOI: 10.5847/wjem.j.1920-8642.2023.104
7. Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, et al. Molecular pathophysiology of congenital long QT syndrome. Physiol Rev. 2017; 97(1):89–134. DOI: 10.1152/physrev.00008.2016
8. Shah SR, Park K, Alweis R. Long QT syndrome: a comprehensive review of the literature and current evidence. Current Problems in Cardiology. 2019; 44(3):92–106. DOI: 10.1016/j.cpcardiol.2018.04.002
9. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. DOI: 10.1038/gim.2015.30.
10. Li K, Zhang P. Clinical advances in congenital long QT syndrome. Cardiology Discovery. 2021;1(3):195-201. DOI: 10.1097/CD9.0000000000000017.
11. Crotti L, Spazzolini C, Tester DJ, Ghidoni A, Baruteau A-E, Beckmann B-M, et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J. 2019;40(35): 2964–75. DOI: 10.1093/eurheartj/ehz311
12. Santen GWE, Leitch HG, Cobben J. Gene–disease relationship evidence: A clinical perspective focusing on ultra-rare diseases. Human Mutation. 2022; 43:1082–88. DOI: 10.1002/humu.24367.
13. Specterman MJ, Behr ER. Cardiogenetics: the role of genetic testing for inherited arrhythmia syndromes and sudden death. Heart. 2023;109(6):434-41. DOI: 10.1136/heartjnl-2021-320015.
14. Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/ Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythmia. 2022; 38(4):491–553. DOI: 10.1093/europace/euac030.
15. Wilde AAM, Amin AS. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol. 2018; 4(5):569-79. DOI: 10.1016/j.jacep.2018.03.006
16. Il’darova RA, Sherbakova NV, Bereznitskaya VV, Shkolnikova MA. Cardiac and non-cardiac characteristics of Jervell-Lange-Nielsen syndrome. Vestnik aritmologii. 2021;28(3):37-44. DOI: 10.35336/VA-2021-3-37-44
17. Galic E, Bešlic P, Kilic P, Planinic Z, Pašalic A, Galic I, et al. Congenital long QT syndrome: a systematic review. Acta Clin Croat. 2021; 60(4):739-48. DOI: 10.20471/acc.2021.60.04.22
18. Conte G, Scherr D, Lenarczyk R, Gandjbachkh E, Boulé S, Spartalis MD, et al. Diagnosis, family screening, and treatment of inherited arrhythmogenic diseases in Europe: results of the European Heart Rhythm Association Survey. Europace. 2020; 22(12):1904–10. DOI: 10.1093/europace/euaa223
19. Schwartz PJ, Woosley RL. Predicting the unpredictable: drug-induced QT prolongation and torsades de pointes. JACC. 2016; 67(13):1639–50. DOI: 10.1016/j.jacc.2015.12.063.
20. Wilde AAM, Amin AS, Postema PG. Diagnosis, management, and therapeutic strategies for congenital long QT syndrome. Heart. 2022; 108:332–8. DOI: 10.1136/heartjnl-2020-318259
21. El Refaey MM, Mohler PJ. Ankyrins and spectrins in cardiovascular biology and disease. Front Physiol. 2017; 8:852. DOI: 10.3389/fphys.2017.00852
22. York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med. 2022; 9:964675. DOI: 10.3389/fcvm.2022.964675.
23. Pérez-Riera AR, Barbosa-Barros R, Samesina N, Pastore CA, Scanavacca M, Daminello-Raimundo R, et al. Andersen-Tawil Syndrome: A Comprehensive Review. Cardiol Rev. 2021;29(4):165–77. DOI: 10.1097/CRD.0000000000000326. PMID: 32947483.
24. Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/ Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm. 2020;17(9): e269-e316. DOI: 10.1016/j.hrthm.2020.05.004.
25. Shlyakhto EV, Arutyunov GP, Belenkov YuN, Boytsov SA. National guidelines for risk identification and prevention of sudden cardiac death. (2nd ed.). M.: Medpraktika-M, 2018. ISBN: 978-5-98803-397-4.
26. Hauwanga WN, Yau RCC, Goh KS, Castro Ceron JI, Alphonse B, Singh G, et al. Management of Long QT Syndrome: A Systematic Review. Cureus. 2024;16(6): e62592. DOI: 10.7759/cureus.62592.
27. Han L, Liu F, Li Q, Qing T, Zhai Z, Xia Z, et al. The efficacy of beta-blockers in patients with long QT syndrome 1-3 according to individuals’ gender, age, and QTc intervals: A Network Meta-analysis. Front Pharmacol. 2020; 11:579525. DOI: 10.3389/fphar.2020.579525
28. Went TR, Sultan W, Sapkota A, Khurshid H, Qureshi IA, Jahan N, et al. A systematic review on the role of beta-blockers in reducing cardiac arrhythmias in long QT syndrome subtypes 1−3. Cureus. 2021;13(9): e17632. DOI: 10.7759/cureus.17632.
29. Koponen M, Marjamaa A, Väänänen H, Tuiskula AM, Kontula K, Swan H, et al. Effects of β-blockers on ventricular repolarization documented by 24-hour electrocardiography in long QT syndrome type 2. Heart Rhythm. 2022; 19(9):1491-8. DOI: 10.1016/j.hrthm.2022.04.028
30. Taylor C, Stambler BS. Management of long QT syndrome in women before, during, and after pregnancy. US Cardiology Review. 2021;15: e08. DOI: 10.15420/usc.2021.02
31. Bos JM, Crotti L, Rohatgi RK, Castelletti S, Dagradi F, Schwartz PJ, et al. Mexiletine shortens the QT interval in patients with potassium channel-mediated type 2 long QT syndrome. Circ Arrhythm Electrophysiol. 2019; 12(5):e007280. DOI: 10.1161/CIRCEP.118.007280.
32. Zhu W, Bian X, Lv J. From genes to clinical management: a comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2. 2024; 5(8):573-86. DOI: 10.1016/j.hroo.2024.07.006.
33. Yang Y, Lv TT, Li SY, Zhang P. Sodium channel blockers in the management of long QT syndrome types 3 and 2: A system review and meta-analysis. J Cardiovasc Electrophysiol. 2021; 32(11):3057–67. DOI: 10.1111/jce.15223
34. Cano J, Zorio E, Mazzanti A, Arnau MA, Trenor B, Priori SG, et al. Ranolazine as an alternative therapy to Flecainide for SCN5A V411M long QT syndrome type 3 patients. Front Pharmacol. 2020; 11:580481. DOI: 10.3389/fphar.2020.580481
35. Rouhana S, Virsolvy A, Fares N, Richard S, Thireau J. Ranolazine: an old drug with emerging potential; lessons from pre-clinical and clinical investigations for possible repositioning. Pharmaceuticals (Basel). 2021; 15(1):31. DOI: 10.3390%2Fph15010031
36. Wang M, Peterson DR, Rosero S, McNitt S, Rich DQ, Seplaki CL, et al. Effectiveness of implantable cardioverter-defibrillators to reduce mortality in patients with long QT syndrome. JACC. 2021; 78(21):2076–88. DOI: 10.1016/j.jacc.2021.09.017
37. Biton Y, Rosero S, Moss AJ, Goldenberg I, Kutyifa V, McNitt S, et al. Primary prevention with the implantable cardioverter-defibrillator in high-risk long-QT syndrome patients. Europace. 2019; 21:339–46. DOI: 10.1093/europace/euy149
38. Iskenderov BG, Zaitseva AV. Pathophysiological aspects and therapeutic effects of permanent cardiac pacing. International Journal of Heart and Vascular Diseases. 2019; 7(24):4–13.
39. Sgro A, Drake TM, Lopez-Ayala P, Phan K. Left cardiac sympathetic denervation in the management of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Congenit Heart Dis. 2019;14(6):1102–12. DOI: 10.1111/chd.12855.
40. Dusi V, Pugliese L, De Ferrari GM, Odero A, Crotti L, Dagradi F, et al. Left cardiac sympathetic denervation for long QT syndrome: 50 years’ experience provides guidance for management. JACC: Clinical Electrophysiology. 2022; 8(3):281–94. DOI: 10.1016/j.jacep.2021.09.002
Review
For citations:
Iskenderov B.G., Molokova E.A., Mozhzhukhina I.N. Genetic architecture of long QT syndrome and genotype-specific treatment. Medical alphabet. 2025;(4):7-14. (In Russ.) https://doi.org/10.33667/2078-5631-2025-4-7-14