Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Biomarkers of neuroinflammation and microcirculatory dysfunction in Alzheimer's disease: a comprehensive assessment of the pathogenetic and diagnostic role

https://doi.org/10.33667/2078-5631-2025-2-29-38

Abstract

The aim of the study was to identify laboratory biomarkers of asthma that could be promising for research as diagnostic tools.

 Materials and methods. 52 patients with asthma and 59 patients in the control group without cognitive impairment were examined, in which the concentration of 103 potential biomarkers in blood plasma (111 people) and CSF (24 people) were studied.

 Results. Statistically significant differences (p<0.01) in plasma concentrations of 43 biomarkers were obtained in patients with asthma and the control group. In a correlation matrix reflecting the interactions between biomarkers in CSF (17 markers) and in blood plasma (13 markers).

Conclusion. Our results indicate a significant role of neuroinflammation, vascular pathology, angiogenesis, and BBB dysfunction in the pathological process occurring in asthma, which were previously confirmed by various researchers. Pathogenetically based plasma biomarkers associated with various links in the pathogenesis of asthma have been identified. Biomarkers of lipid metabolism, such as Apo-A1, Apo-CII in the peripheral bloodstream can be considered as indicators of the vascular-neurodegenerative process. Pro-inflammatory cytokines (IFNa, IFNy, IL-15, IL-1a, IL-8, sTNFR-1, sTNFR-2, IL-12p70 (including its IL-12p40 subunit), IL-17a, sCD 40L, sgp130, IP10, endoglin) and anti-inflammatory biomarkers (G-CSF1, BMP9, complement C 4, D-dimer, EFG1, eotaxin, fractalkine, G-CSF, GM–CSF, GDF-15, IL-1RA, IL-4, MDC, MIP1 β, MIP4, P-selectin, PEDF, sCD 30, sICAM-1, sNCAM-1, sIL-2ra, sIL-4r, TGFa VEGF-C, alpha-1-antitrypsin) in blood plasma, they are promising candidates for future effective diagnostic laboratory biomarkers. The most promising biomarker seems to be interleukin 12 subunit 40 (IL-12p40), due to its increase in the plasma of patients with asthma in contrast to the control group and the greatest number of correlations of its plasma level with other biomarkers in CSF.

About the Authors

A. K. Minochkin
Kurortny Administrative District City Hospital № 40, Ministry of Health of Russia; Saint Petersburg State University
Russian Federation

 Minochkin Ales K., head of Multidisciplinary Dept; assistant at Postgraduate Education Dept

Sestroretsk, St. Petersburg



V. Yu. Lobzin
Saint Petersburg State University; S. M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

 Lobzin Vladimir Yu., DM Sci (habil.), professor, head of Dept of Neurology and Neurosurgery; professor at Dept of Nervous Diseases

Saint Petersburg



N. N. Sushentseva
Kurortny Administrative District City Hospital № 40, Ministry of Health of Russia
Russian Federation

Sushentseva Natalia N., head of the Scientific Research Laboratory of Translational Medicine

Sestroretsk, St. Petersburg



О. S. Popov
Kurortny Administrative District City Hospital № 40, Ministry of Health of Russia
Russian Federation

Popov Oleg S., biostatistician at the Translational Medicine Research Laboratory

Sestroretsk, St. Petersburg



S. V. Apalko
Kurortny Administrative District City Hospital № 40, Ministry of Health of Russia
Russian Federation

 Apalko Svetlana V., PhD Bio Sci, head of the Translational Biomedicine Research Laboratory and the Laboratory of Medical, Genetic and Genomic Research

Sestroretsk, St. Petersburg



Yu. P. Kopteva
Kurortny Administrative District City Hospital № 40, Ministry of Health of Russia; Saint Petersburg State University
Russian Federation

 Kopteva Yulia P., physician of the CT and MRI room of the X-ray Dept; assistant at Postgraduate Education Dept

Sestroretsk, St. Petersburg



S. D. Ponomareva
Saint Petersburg State University
Russian Federation

Ponomareva Svetlana D., junior researcher at Medical Institute

St. Petersburg



S. G. Shcherbak
Kurortny Administrative District City Hospital № 40, Ministry of Health of Russia; Saint Petersburg State University
Russian Federation

Shcherbak Sergey G., DM Sci (habil.), professor, chief physician; head of Postgraduate Education Dept

Sestroretsk, St. Petersburg



References

1. Litvinenko I. V., Lobzin V. Yu., Emelin A. Yu., Kolmakova K. A., Lupanov I. A. The role of neuroinflammation in the development of Alzheimer's disease. Proceedings of the Russian Military Medical Academy. 2022; 41 (S 4): 50–56. (In Russ.).

2. Wohleb E. S., Powell N. D., Godbout J. P., Sheridan J. F. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J. Neurosci. 2013; 33: 13820–13833.

3. Sochoka M., Diniz B. S., Leszek, J. Inflammatory responses in the CNS: Fried or foe? Mol. Neurobiol. 2017; 54: 8071–8089.

4. McGeer P.L., Rogers J., McGeer E. G. Inflammation, antiinflammatory agents, and Alzheimer’s disease: The last 22 years. J. Alzheimer’s Dis. 2016; 54: 853–857.

5. Pasinetti G. M. From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer’s disease: The role of NSAIDs and cyclooxygenase in β-amyloidosis and clinical dementia1. J. Alzheimer’s Dis. 2002; 4: 435–445.

6. Harder D. R., Zhang C., Gebremedhin D. Astrocytes function in matching blood flow to metabolic activity. News Physiol. Sci. 2002; 17: 27–31.

7. Zlokovic B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008; 57: 178–201.

8. Abbott N. J., Friedman A. Overview and introduction: The blood-brain barrier in health and disease. Epilepsia. 2012; 53: 1–6.

9. Kim J.-B., Yu Y.-M., Kim S.-W., Lee J.-K. Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res. 2005; 1060: 188–192.

10. Albert MS, DeKosky ST, Dickson D. et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on AgingAlzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May; 7 (3): 270–9. DOI: 10.1016/j.jalz.2011.03.008. Epub 2011 Apr 21.

11. Sperling RA, Aisen PS, Beckett LA. et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on AgingAlzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May; 7 (3): 280–92. DOI: 10.1016/j.jalz.2011.03.003. Epub 2011 Apr 21.

12. McKhann GM, Knopman DS, Chertkow H. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May; 7 (3): 263–9. DOI: 10.1016/j.jalz.2011.03.005. Epub 2011 Apr 21.

13. Paula-Lima AC, Tricerri MA, Brito-Moreira J, Bomfim TR, Oliveira FF, Magdesian MH, Grinberg LT, Panizzutti R, Ferreira ST. Human apolipoprotein A-I binds amyloid-beta and prevents Abeta-induced neurotoxicity. Int J. Biochem. Cell Biol. 2009; 41: 1361–1370.

14. Lefterov I, Fitz NF, Cronican AA, Fogg A, Lefterov P, Kodali R, Wetzel R, Koldamova R. Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS 1DeltaE 9 mice. J. Biol. Chem. 2010; (285): 36945–36957.

15. Slot RER, Van Harten AC, Kester MI, Jongbloed W, Bouwman FH, Teunissen CE, Scheltens P, Veerhuis R, van der Flier WM. Apolipoprotein A1 in Cerebrospinal Fluid and Plasma and Progression to Alzheimer's Disease in Non-Demented Elderly. J. Alzheimers Dis. 2017; 56 (2): 687–697.

16. Haas MJ, Mooradian AD. Inflammation, high-density lipoprotein and cardiovascular dysfunction. Curr. Opin. Infect. Dis. 2011; 24: 265–72.

17. Gazi IF, Apostolou FA, Liberopoulos EN. et al. Leptospirosis is associated with markedly increased triglycerides and small dense low-density lipoprotein and decreased high-density lipoprotein. Lipids. 2011; 46: 953–60.

18. Ripolles Piquer B, Nazih H, Bourreille A. et al. Altered lipid, apolipoprotein, and lipoprotein profiles in inflammatory bowel disease: consequences on the cholesterol efflux capacity of serum using Fu5AH cell system. Metabolism. 2006; 55: 980–8.

19. Martínez-Morillo Eduardo, Hansson Oskar, Atagi Yuka, Bu Guojun, Minthon Lennart, Diamandis Eleftherios, Nielsen Henrietta. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer's disease patients and controls. Acta Neuropathol. 2014 May; 127 (5): 633–43. DOI: 10.1007/s00401-014-1266-2. Epub 2014 Mar 15.

20. Ogunmokun Gilbert, Dewanjee Saikat, Chakraborty Pratik, Valupadas Chandrasekhar, Chaudhary Anupama, Kolli Viswakalyan, Anand Uttpal, Vallamkondu Jayalakshmi, Goel Parul, Prasad Reddy Paluru Hari, Dip Gill Kiran, Reddy P Hemachandra, De Feo Vincenzo, Kandimalla Ramesh. The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells. 2021 Oct 18; 10 (10): 2790. DOI: 10.3390/cells10102790

21. Rubio-Perez J.M., Morillas-Ruiz J.M. A review: Inflammatory process in Alzheimer’s disease, role of cytokines. Sci. World J. 2012; 2012: 756357.

22. Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am. J. Physiol. CellPhysiol. 2001; 280: C 1375–C 1386.

23. Jin K., Peel A. L., Mao X. O., Xie L., Cottrell B. A., Henshall D. C., Greenberg D. A. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004; 101: 343–347.

24. Alasmari F., Alshammari M. A., Alasmari A. F., Alanazi W. A., Alhazzani K. Neuroinflamma tory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels. Metabolism. Biomed. Res. Int. 2018; 2018: 3087475.

25. Richartz E. et al. Decline of immune responsiveness: a pathogenetic factor in Alzheimer’s disease? Journal of psychiatric research. 2005; 39: 535–543. https://doi.org/10.1016/j.jpsychires.2004.12.005

26. Tan M-S, Yu J-T, Jiang T, Zhu X–C, Guan H-S, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 Mice. JAD. 2013; 38: 633–646. DOI: 10.3233/JAD-131148

27. Berg J, Prokop S, Miller KR. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease – like pathology and cognitive decline. Nat Med. 2012; 18: 1812–1819. DOI: 10.1038/nm.2965

28. Hu WT, Holtzman DM, Fagan AM. et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology. 2012; 9: 897–905. DOI: 10.1212/WNL.0b013e318266fa70

29. Bagyinszky E. et al. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurological Sci. 2017; 376: 242–254.

30. Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer's disease; A source of heterogeneity and target for personalized therapy. Neuroscience. 2015 Aug 27; 302: 103–11. DOI: 10.1016/j.neuroscience.2014.09.061. Epub 2014 Oct 5. PMID: 25286385; PMCID: PMC 4602369.

31. Phillips E. C. et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochemical Soc. Trans. 2014; 42: 1321–1325.

32. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018; 18: 225–42. DOI: 10.1038/nri.2017.125

33. Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol. 2015; 7: a020545. DOI: 10.1101/cshperspect.a020545

34. McFarland KN, Chakrabarty P. Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics. 2022; 19: 186–208. DOI: 10.1007/s13311-021-01179-3

35. Preman P., Alfonso-Triguero M., Alberdi E., Verkhratsky A., Arranz A. Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways. Cells. 2021; 10: 540.

36. Gamage R., Wagnon I., Rossetti I., Childs R., Niedermayer G., Chesworth R., Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front. Cell. Neurosci. 2020; 14: 577912.

37. Hylén U., Eklund D., Humble M., Bartoszek J., Sarndahl E., Bejerot S. Increased inflammasome activity in markedly ill psychiatric patients: An explorative study. J. Neuroimmunol. 2020; 339: 577119.

38. Preman P., Alfonso-Triguero M., Alberdi E., Verkhratsky A., Arranz A. Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways. Cells. 2021; 10: 540.

39. Odinak M. M., Emelin A. Yu., Lobzin V. Yu. Cognitive impairment in cerebrovascular pathology. St. Petersburg, 2022; 229. (In Russ.).

40. Lobzin V. Yu. Vascular neurodegenerative cognitive disorders (pathogenesis, clinical manifestations, early and differential diagnosis): dis. … Doctor of Medical Sciences. Saint Petersburg, 2016. P. 333. (In Russ.).

41. Kolmakova K. A. Impaired cerebral and systemic hemodynamics in Alzheimer's disease: specialty 14.01.11 «Nervous diseases»: dis. … Candidate of Medical Sciences / Kolmakova Kristina Andreevna, 2020. 149 p. (In Russ.).

42. Alvarez-Vergara M.I., Rosales-Nieves A.E., March-Diaz R. et al. Non-productive angiogenesis disassembles Aß plaque-associated blood vessels. Nat Commun. 2021; 12: 3098. https://doi.org/10.1038/s41467-021-23337-z

43. Zimetti F., Adorni M. P., Marsillach J., Marchi C., Trentini A., Valacchi G., Cervellati C. (2021). Connection between the altered HDL antioxidant and anti-inflammatory properties and the risk to develop Alzheimer’s disease: a narrative review. Oxidative Medicine and Cellular Longevity, 2021.

44. Ouimet M., Barrett T. J., Fisher E. A. Review Basic Mechanisms and Their Roles in Vascular Health and Disease. Circ. Res. 2019; 124: 1505–1518.

45. Shao B., Heinecke J. W. Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? Expert review of proteomics. 2018; 15(1): 31–40.

46. Marsillach J., Adorni M. P., Zimetti F., Papotti B., Zuliani G., Cervellati C. HDL Proteome and Alzheimer’s Disease: Evidence of a Link. Antioxidants. 2020; 9 (12): 1224.

47. Zhou A. L., Swaminathan S. K., Curran G. L., Poduslo J. F., Lowe V. J., Li L., Kandimalla K. K. Apolipoprotein AI crosses the blood-brain barrier through clathrin-independent and cholesterol-mediated endocytosis. Journal of Pharmacology and Experimental Therapeutics. 2019; 369 (3): 481–488.

48. Zhou A. L., Swaminathan S. K., Curran G. L., Poduslo J. F., Lowe V. J., Li L., Kandimal la K. K. Apolipoprotein AI crosses the blood-brain barrier through clathrin-independent and cholesterol-mediated endocytosis. Journal of Pharmacology and Experimental Therapeutics. 2019; 369 (3): 481–488.

49. Zenaro E., Pietronigro E., Bianca V. D., Piacentino G., Marongiu L., Budui S., Constantin G. Neutrophils promote Alzheimer's disease–like pathology and cognitive decline via LFA-1 integrin. Nature medicine. 2015; 21 (8): 880–886.

50. Oberstein T. J., Taha L., Spitzer P., Hellstern J., Herrmann M., Kornhuber J., Maler J. M. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: a case control study. Frontiers in immunology. 2018; 9: 1213.

51. Doecke J. D., Laws S. M., Faux N. G., Wilson W., Burnham S. C., Lam C. P., Lifestyle Research Group. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Archives of neurology. 2012; 69 (10): 1318–1325.

52. Gordon S., Martinez F. O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32 (5): 593–60.

53. Kawahara K., Suenobu M., Yoshida A., Koga K., Hyodo A., Ohtsuka H., Nakayama H. Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience. 2012; 207: 243–260.

54. Suh H. S., Zhao M. L., Derico L., Choi N., Lee S. C. Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. Journal of neuroinflammation. 2013; 10 (1): 1–12.

55. Althubaity N., Schubert J., Martins D., Yousaf T., Nettis M. A., Mondelli V., Veronese M. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. NeuroImage: Clinical. 2022; 33: 102926.

56. Müller N. The role of intercellular adhesion molecule-1 in the pathogenesis of psychiatric disorders. Frontiers in Pharmacology. 2019; 10: 1251.

57. Ebrahimi T., Rust M., Kaiser S. N., Slowik A., Beyer C., Koczulla A. R., Bach J. P. α1-antitrypsin mitigates NLRP3-inflammasome activation in amyloid β1–42-stimulated murine astrocytes. Journal of neuroinflammation. 2018; 15 (1): 1–15.

58. Rossi E., Bernabeu C., Smadja D. M. Endoglin as an adhesion molecule in mature and progenitor endothelial cells: a function beyond TGF-β. Frontiers in Medicine. 2019; 6: 10.

59. Park E. S., Kim S., Yao D. C., Savarraj J. P., Choi H. A., Chen P. R., Kim E. Soluble Endoglin Stimulates Inflammatory and Angiogenic Responses in Microglia That Are Associated with Endothelial Dysfunction. International Journal of Molecular Sciences. 2022; 23 (3): 1225.

60. Tvarijonaviciute A., Zamora C., Ceron J. J., Bravo-Cantero A.F., Pardo-Marin L., Valverde S., Lopez-Jornet P. Salivary biomarkers in Alzheimer’s disease. Clinical Oral Investigations. 2020; 24 (10): 3437–3444.

61. Wang J., Huang R., Tian S., Lin H., Guo D., An K., Wang S. Elevated plasma level of D-dimer predicts the high risk of early cognitive impairment in type 2 diabetic patients as carotid artery plaques become vulnerable or get aggravated. Current Alzheimer Research. 2019; 16 (5): 396–404.

62. Karkkainen M. J., Saaristo A., Jussila L., Karila K. A., Lawrence E. C., Pajusola K., Alitalo K. A model for gene therapy of human hereditary lymphedema. Proceedings of the National Academy of Sciences. 2001; 98 (22): 12677–12682.

63. Trinchieri G. et al. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003; 19: 641–644.

64. Cooper AM, Khader SA. IL-12p40: an inherently agonistic cytokine. Trends Immunol. 2007 Jan; 28 (1): 33–8. DOI: 10.1016/j.it.2006.11.002. Epub 2006 Nov 28. PMID: 17126601.

65. Vom Berg J, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I, Wegner A, Mair F, Schipke CG, Peters O, Winter Y, Becher B, Heppner FL. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat Med. 2012 Dec; 18 (12): 1812–9. DOI: 10.1038/nm.2965. Epub 2012 Nov 25. PMID: 23178247.


Review

For citations:


Minochkin A.K., Lobzin V.Yu., Sushentseva N.N., Popov О.S., Apalko S.V., Kopteva Yu.P., Ponomareva S.D., Shcherbak S.G. Biomarkers of neuroinflammation and microcirculatory dysfunction in Alzheimer's disease: a comprehensive assessment of the pathogenetic and diagnostic role. Medical alphabet. 2025;(2):29-38. (In Russ.) https://doi.org/10.33667/2078-5631-2025-2-29-38

Views: 149


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)