

Vitamin D and neuroendocrinology
https://doi.org/10.33667/2078-5631-2024-33-38-42
Abstract
Despite the centuries-old history of vitamin D analysis, this substance has unique properties, and recently has been showing its biological functions in a new way. It not only forms and supports the regeneration of the bone system, but also performs a number of other important effects in the human body, in particular, promoting the adequate functioning of the neurohumoral system of the body. This suggests that vitamin D deficiency entails consequences that in some cases can become irreversible.
About the Authors
Yu. V. BoldyrevaRussian Federation
Boldyreva Yulia V., PhD Med, associate professor, associate professor at Dept of Biological Chemistry
Tyumen
I. A. Lebedev
Russian Federation
Lebedev Ilya A., DM Sci (habil.), professor at Dept of Topographic Anatomy and Operative Surgery with a course of Osteopathy
Tyumen
S. N. Suplotov
Russian Federation
Suplotov Sergey N., DM Sci (habil.), professor, head of Dept of Clinical Laboratory Diagnostics
Tyumen
E. A. Mateikovich
Russian Federation
Mateikovich Elena A., PhD Med, associate professor at Dept of Obstetrics and Gynecology at the Institute of Motherhood and Childhood, Director of the Institute of Motherhood and Childhood
Tyumen
N. G. Maltseva
Russian Federation
Maltseva Natalia G., PhD Med, associate professor at Dept of Topographic Anatomy and Operative Surgery with a course in Osteopathy at the Institute of Fundamental Disciplines
Tyumen
E. I. Malinina
Russian Federation
Malinina Elena I., PhD Med, associate professor at Dept of Pediatric Diseases and Polyclinic Pediatrics at the Institute of Motherhood and Childhood
Tyumen
Yu. S. Voronova
Russian Federation
Voronova Yulia S., assistant at Dept of Pediatric Diseases and Polyclinic Pediatrics at the Institute of Motherhood and Childhood
Tyumen
References
1. Gogoleva A.G., Zaharov V.V. Rol’ nedostatochnosti vitamina D v formirovanii kognitivnyh rasstrojstv. BMIK. 2019; 7: 274. (In Russ.).
2. Pigarova E.A., Rozhinskaya L. Ya., Belaya Zh.E. i dr. Klinicheskie rekomendacii Rossijskoj associacii endokrinologov po diagnostike, lecheniyu i profilaktike deficita vitamina D u vzroslyh. Problemy endokrinologii. 2016; 62 (4): 60-84. (In Russ.).
3. Pleshcheva A.V., Pigarova E.A., Dzeranova L.K. Vitamin D i metabolizm: fakty, mify i predubezhdeniya. Ozhirenie i metabolizm. 2012; 2: 33-42. (In Russ.).
4. Ali N. Role of vitamin D in preventing of Covid19 infection, progression and severity. J. Infect. Public. Health. 2020 Oct; 13 (10): 1373-1380. https://doi.org/10.1016/j.jiph.2020.06.021
5. Barrea L., Verde L., Grant W. B., Frias-Toral E., Sarno G., Vetrani C., Ceriani F., Garcia-Velasquez E., Contreras-Briceño J., Savastano S., Colao A., Muscogiuri G. Vitamin D: A Role Also in Long Covid19? Nutrients. 2022 Apr 13; 14 (8): 1625. https://doi.org/10.3390/nu14081625
6. Bartali B., Devore E., Grodstein F., Kang J.H. Plasma vitamin D levels and cognitive function in aging women: the nurses’ health study. J. Nutr. Health. Aging. 2014; 18 (4): 400-6.
7. Bhattarai P., Bhattarai J.P., Kim M. S., Han S.K. Non-genomic action of vitamin D3 on N-methyl-D-aspartate and kainate receptormediated actions in juvenile gonadotrophin-releasing hormone neurons. Reprod. Fertil. Dev. 2017; 29 (6): 1231-1238.
8. Chakhtoura M. The role of vitamin D. Deficiency in the incidence, progression, and complications of type 1. Diabetes mellitus / M. Chakhtoura, S. T. Azar. Int J. Endocrinol. 2013; 148673.
9. Chen Y., Zhi X. Roles of Vitamin D in Reproductive Systems and assisted Reproductive Technology. Endocrinology. 2021; 161 (4). pii: bqaa023. https://doi.org/10.1210/endocr/bqaa023
10. Halloran B.P., DeLuca H. F. Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J. Nutr. 1980; 110: 1573-80.
11. Hanieh S., Ha T. T., Simpson J.A., Thuy T. T., Khuong N.C., Thoang D.D., Tran T.D., Tuan T., Fisher J., Biggs B.A. Maternal vitamin D status and infant outcomes in rural Vietnam: a prospective cohort study. PLoS. One. 2014; 9 (6): e99005.
12. Kim D. The Role of Vitamin D in Thyroid Diseases. Int J. Mol. Sci. 2017; 18 (9): 1949. https://doi.org/10.3390/ijms18091949
13. Kinuta K., Tanaka H., Moriwake T. et al. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology. 2000; 141: 1317-24.
14. Kivity S., Agmon-Levin N., Zisappl M., Shapira Y., Nagy E.V., Dankó K., Szekanecz Z., Langevitz P., Shoenfeld Y. Vitamin D and autoimmune thyroid Diseases. Cell Mol. Immunol. 2011; 8: 243–247. https://doi.org/10.1038/ cmi.2010.73
15. Kurylowicz A., Ramos-Lopez E., Bednarczuk T., Badenhoop K. Vitamin D-binding protein (DBP) gene polymorphism is associated with Graves’ Disease and the vitamin D status in a Polish population study. Exp. Clin. Endocrinol. Diabetes. 2006; 114: 329-335. https://doi.org/10.1055/s2006–924256
16. Kwiecinksi G.G., Petrie G.I., DeLuca H.F. 1,25-Dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats. Am. J. Physiol. 1989; 256: E483-87.
17. Maddock J., Geoffroy M.C., Power C., Hypponen E. 25-Hydroxyvitamin D and cognitive performance in mid-life. Br. J. Nutr. 2014; 111 (5): 904-14.
18. Martineau AR, Cantorna MT. Vitamin D for Covid19: where are we now? Nat. Rev. Immunol. 2022 Sep; 22 (9): 529-530. https://doi.org/10.1038/s41577022007656
19. Mazokopakis E.E., Papadomanolaki M.G., Tsekouras K.C., Evangelopoulos A.D., Kotsiris D.A., Tzortzinis A.A. Is vitamin D related to pathogenesis and treatment of Hashimoto’s thyroiditis? Hell. J. Nucl. Med. 2015; 18: 222-227.
20. Merhi Z., Doswell A., Krebs K., Cipolla M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J. Clin. Endocrinol. Metab. 2014; 99 (6): E1137-E1145.
21. Metwalley K.A., Farghaly H. S., Sherief T., Hussein A. Vitamin D status in children and adolescents with autoimmune thyroiditis. J. Endocrinol. Investig. 2016; 39: 793-797. https://doi.org/10.1007/s40618–016–0432-x
22. Nicholas C., Davis J., Fisher T., Segal T., Petti M., Sun Y., Wolfe A., Neal-Perry G. Maternal Vitamin D Deficiency Programs Reproductive Dysfunction in Female Mice Offspring Through Adverse Effects on the Neuroendocrine Axis. Endocrinology. 2016; 157: 1535-45.
23. Peterson A., Mattek N., Clemons A., Bowman G. L., Buracchio T., Kaye J., Quinn J. Serum vitamin D concentrations are associated with falling and cognitive function in older adults. J. Nutr. Health. Aging. 2012; 16 (10): 898-901.
24. Peterson A. L., Murchison C., Zabetian C., Leverenz J.B., Watson G. S., Montine T., Carney N., Bowman G. L., Edwards K., Quinn J. F. Memory, mood, and vitamin D in persons with Parkinson’s disease. J. Parkinsons Dis. 2013; 3 (4): 547-55.
25. Salami M., Talaei S.A., Davari S., Taghizadeh M. Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci. Lett. 2012; 509 (1): 56-9.
26. Sharif M.R., Madani M., Tabatabaei F., Tabatabaee Z. The Relationship between Serum Vitamin D Level and Attention Deficit Hyperactivity Disorder. Iran. J. Child. Neurol. 2015; 9 (4): 48–53. А.
27. Tartagni M., Cicinelli M.V., Tartagni M.V., Alrasheed H., Matteo M., Baldini D., De Salvia M., Loverro G., Montagnani M. Vitamin D Supplementation on Premenstrual Syndrome-Related Mood Disorders in Adolescents with Severe Hypovitaminosis D. J. Pediatr. Adolesc. Gynecol. 2015; (15) 0044: 1083-3188.
28. Tylavsky F.A., Kocak M., Murphy L.E., Graff J.C., Palmer F.B., Volgyi E., Diaz-Thomas A.M., Ferry R. J. Gestational Vitamin 25(OH)D Status as a Risk Factor for Receptive Language Development: A 24-Month, Longitudinal, Observational Study. Nutrients. 2015; 7 (12): 9918-30.
29. Wayse V. Association of subclinical vitamin D Efficiency with severe acute lower respiratory infection in Indian children unДer 5 y / V. Wayse. Eur. J. Clin. Nutr. 2004; 58 (4): 563–567.
30. Whitehouse A. J., Holt B. J., Serralha M., Holt P.G., Kusel M.M., Hart P.H. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics. 201; 129 (3): 485-93.
31. Wilson V.K., Houston D.K., Kilpatrick L., Lovato J., Yaffe K., Cauley J.A., Harris T.B., Simonsick E.M., Ayonayon H.N., Kritchevsky S.B., Sink K.M. Relationship between 25-hydroxyvitamin D and cognitive function in older adults: the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2014; 62 (4): 636-41.
32. Xu J., Lawson M. S., Xu F. et al. Vitamin D3 Regulates Follicular Development and Intrafollicular Vitamin D Biosynthesis and Signaling in the Primate Ovary. Front Physiol. 2018; 9: 1600. Published 2018 Nov 14.
33. Yasuda T., Okamoto Y., Hamada N., Miyashita K., Takahara M., Sakamoto F., Miyatsuka T., Kitamura T., Katakami N., Kawamori D. et al. Serum vitamin D levels are Decreased and associated with thyroid volume in female patients with newly onset Graves’ Disease. Endocrine. 2012; 42: 739-741. https://doi.org/10.1007/s12020–012–9679-y
34. Zhang H., Liang L., Xie Z. Low vitamin D status is associated with increased thyrotropin-receptor antibody titer in Graves’ Disease. Endocr Pract. 2015; 21: 258–263. https://doi.org/10.4158/EP14191.OR
35. Zhu P., Tong S. L., Hao J.H., Tao R.X., Huang K., Hu W.B., Zhou Q. F., Jiang X.M., Tao F.B. Cord blood vitamin D and neurocognitive development are nonlinearly related in toddlers. J. Nutr. 2015; 145 (6): 1232-38.
Review
For citations:
Boldyreva Yu.V., Lebedev I.A., Suplotov S.N., Mateikovich E.A., Maltseva N.G., Malinina E.I., Voronova Yu.S. Vitamin D and neuroendocrinology. Medical alphabet. 2024;(33):38-42. (In Russ.) https://doi.org/10.33667/2078-5631-2024-33-38-42