Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The prevalence of resistance to meropenem among microorganisms detected in children's hospital patients

https://doi.org/10.33667/2078-5631-2024-31-37-41

Abstract

The aim is to assess the prevalence and significance of resistance to meropenem among conditionally pathogenic microorganisms detected in various biological materials in children's hospital patients.

Materials and methods. The results of microbiological studies of 43936 samples of biological material taken from 41287 children hospitalized in 2023 with various pathologies aged from birth to 18 years were studied.

Results. Among all samples of biomaterial, certain bacteria were detected in 16034 cases (36 %). In 5431 samples, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa with different sensitivity to meropenem were detected. The largest number of samples containing meropenem-resistant colonies was found among Klebsiella pneumoniae (471), and the largest number of cases of resistance was found among Acinetobacter baumannii (183 out of 433). Resistance to meropenem in Escherichia coli was detected only in isolated cases (12 samples – 1,4 %).Conclusions. 1. Among the microorganisms detected in samples of various biomaterials, 4 microorganisms (Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa) with potential resistance to meropenem were found in 34 %, more often – Escherichia coli (in 43 %). 2. The most common colonies resistant to meropenem were identified among Klebsiella pneumoniae (in 26 %), more often in feces and rectal smears. 3. The highest proportion of meropenem-resistant colonies was found among Acinetobacter baumannii (43 %). 4. The high frequency of detection of resistant strains requires further monitoring and prescribing antibacterial therapy regimens, taking into account the results of laboratory assessment of their sensitivity.

About the Authors

A. A. Garbuzov
Gabrichevsky Research Institute for Epidemiology and Microbiology
Russian Federation

Garbuzov Alexander A., junior researcher at Clinical Dept.

Moscow



A. L. Bayrakova
Gabrichevsky Research Institute for Epidemiology and Microbiology; Russian University of Medicine
Russian Federation

Bayrakova Alexandra L., PhD Bio Sci, leading researcher at Laboratory of Clinical Microbiology and Biotechnology; assistant at Dept of Clinical Microbiology
and Phage Therapy

Moscow



T. A. Ruzhentsova
Gabrichevsky Research Institute for Epidemiology and Microbiology; Moscow Medical University «Reaviz»
Russian Federation

Ruzhentsova Tatyana A., DM Sci (habil.), deputy director for Clinical Work; professor, head of Dept of Internal Diseases

Moscow



M. I. Ayrapetyan
Sechenov Moscow Medical University; Veltishchev Scientific Research Clinical Institute of Pediatrics of the Russian National Research Medical University named after N. I. Pirogov; Children's City Clinical Hospital № 9 named after G. N. Speransky
Russian Federation

Ayrapetyan Maksim I., PhD Med, associate professor of Dept of Pediatric Surgery and Urology-Andrology named after L. P. Alexandrov; head of Dept of Pediatric
Surgery; pediatric surgeon

Moscow



O. Yu. Samarina
Children's City Clinical Hospital № 9 named after G. N. Speransky
Russian Federation

Samarina Olga Yu., bacteriologist

Moscow



A. M. Borisov
Gabrichevsky Research Institute for Epidemiology and Microbiology
Russian Federation

Borisov Aleksandr M., postgraduate student

Moscow



References

1. Matalygina O. A. Antibiotic resistance as a broad and multifaceted biological phenomenon. Medicine: Theory and Practice. 2020; 5(3): 39–44. (In Russ.). https://ojs3.gpmu.org/index.php/med-theory-and-practice/article/view/2465.

2. Courvalin P. Why is antibiotic resistance a deadly emerging disease? Clin.Microbiol. Infect. 2016; 22: 405–407. DOI: 10.1016/j.cmi.2016.01.012.

3. Gorelov A. V., Nikolaeva S. V., Usenko D. V. et al. The effectiveness of using nifuroxazide in acute intestinal infections of bacterial etiology in children. Infekc. bolezni (Infectious diseases). 2018; 16(2): 18–26. (In Russ.). DOI: 10.20953/1729-9225-2018-2-18-26.

4. Khavkina D. A., Chukhliaev P. V., Ruzhentsova T. A. Ineffectiveness of COVID-19 therapy: causes and possible remedies. 2021; 2 (1): 28–31. (In Russ.). DOI: 10.15829/2712-7567-2021-17.

5. Abdurahimov A. H., Hegaj L. N., Jusupova Sh. K. COVID-19 and its complications. Rehealth journal. 2021; 4(12): 61–74. (In Russ.). https://cyberleninka.ru/article/n/covid-19-i-ego-oslozhneniya.

6. Khavinson V. Kh., Кuznik B. I. Complications in CОVID-19 patients. Suggested mechanisms of correction. Klinicheskaya meditsina. 2020; 98(4): 256–265. (In Russ.). DOI: 10.30629/0023-2149-2020-98-4-256-265.

7. Kramar O. G., Savtсhenko T. N. Hospital infections. Vestnik VolGMU. 2010; 2(34): 3–7. (In Russ.). https://cyberleninka.ru/article/n/vnutribolnichnye-infektsii.

8. Adamyan L. V., Kuzmin V. N., Konysheva O. V. et al. Monitoring of nosocomial infection in the obstetrics hospital. Infectious Diseases: News, Opinions, Training. 2017; (3): 57–64. (In Russ.). https://cyberleninka.ru/article/n/monitoring-vnutribolnichnoy-infektsii-v-akusherskom-statsionare.

9. Zakharova J. A. Optimization of microbiological monitoring during epidemiological supervising of nosocomial pyoseptic Medicina jekstremal'nyh situacij. 2011; 2(36): 30–36. (In Russ.). https://cyberleninka.ru/article/n/optimizatsiya-mikrobiologicheskogo-monitoringa-pri-osuschestvlenii-epidemiologicheskogo-nadzora-za-vnutribolnichnymi-gnoyno.

10. WHO. A news release. 2017. Access by http://www.who.int/mediacentre/news/releases/2017/bacteriaantibioticsneeded/ru.

11. Li H., Liu F., Zhang Y., et al. Evolution of CarbapenemResistant Acinetobacter baumannii Revealed through Whole-Genome Sequencing and Comparative Genomic Analysis. Antimicrobial Agents and Chemotherapy. 2015; 59(2): 1168–76. DOI: 10.1128/AAC.04609–14.

12. Ruzhentsova T. A., Ploskireva A. A., Gorelov A. V. Complications of rotavirus infection in children. Pediatrija. Zhurnal im. G. N. Speranskogo. 2016; 2(95): 38–43 (In Russ.).

13. Costa S. S., Viveiros M., Rosato A. E. et al. Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC Microbiology. 2015; 15: 232. DOI: 10.1186/s12866-015-0572-8.

14. Chang H-H., Cohen T., Grad Y. H. et al. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiology and Molecular Biology Reviews: MMBR. 2015; 79(1): 101–16. DOI: 10.1128/MMBR.00039–14.

15. Chunkayeva D. D., Shakenov Ye.R., Adilgozhin M. S. et al. Extensively drug resistance tuberculosis: patients population characteristics and treatment effectiveness. Vestnik KazNMU. 2020; 2: 273–276. (In Russ.). https://cyberleninka.ru/article/n/tuberkulez-s-shirokoy-lekarstvennoy-ustoychivostyu-vozbuditelya-harakteristika-kontingenta-bolnyh-i-effektivnost-lecheniya.

16. Shaidullina E. R., Eidelstein M. V., Skleenova E. Yu. et al. Antibiotic resistance of nosocomial carbapenemase-producing Enterobacterales in Russia: results of surveillance, 2014–2016. Clinical microbiology and antimicrobial chemotherapy. 2018; 20(4): 362–369. (In Russian) DOI: 10.36488/cmac.2018.4.362–36.

17. Sukhorukova M. V., Edelstein M. V., Ivanchik N. V. et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015–2016”. Clinical microbiology and antimicrobial chemotherapy. 2019; 21(2): 147–159. (In Russ.). DOI: 10.36488/cmac.2019.2.147–159.


Review

For citations:


Garbuzov A.A., Bayrakova A.L., Ruzhentsova T.A., Ayrapetyan M.I., Samarina O.Yu., Borisov A.M. The prevalence of resistance to meropenem among microorganisms detected in children's hospital patients. Medical alphabet. 2024;(31):37-41. (In Russ.) https://doi.org/10.33667/2078-5631-2024-31-37-41

Views: 78


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)