

Post-covid syndrome as a dysfunctional pain disorder: current data
https://doi.org/10.33667/2078-5631-2024-29-24-28
Abstract
The concept of post-COVID syndrome (PCS) as an independent nosological entity underlies the search for criteria for establishing this diagnosis. To date, there is an idea of two clinical phenotypes of the post-COVID state, occurring with different pathogenetic mechanisms. One of them is probably the consequences of damage to organs and systems and / or iatrogenic factors suffered during COVID-19. The pathogenesis of the other is not entirely clear, and the clinical manifestations are like those of a number of dysfunctional pain disorders, such as fibromyalgia (FM) and chronic fatigue syndrome / myalgic encephalomyelitis. The article is devoted to the analysis of literary data indicating the similarity of PCS and FM. The need to revise the diagnostic criteria for PCS is substantiated.
About the Authors
E. S. AronovaRussian Federation
Eugenia S. Aronova, PhD Med, researcher
Laboratory of Comorbid Infections and Vaccine
Prevention
Moscow
B. S. Belov
Russian Federation
Boris S. Belov, DM Sci (habil.), head of Dept.
Laboratory of Comorbid Infections and Vaccine
Prevention
Moscow
G. I. Gridneva
Russian Federation
Galina I. Gridneva, PhD Med, researcher
Laboratory of Comorbid Infections and Vaccine
Prevention
Moscow
References
1. World Health Organisation (WHO). A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition_Clinical_case_definition-2021.1 (Accessed:14<sup>th</sup> September, 2024).
2. Davis HE, McCorkell L, Vogel JM. et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21: 133–146. doi: 10.1038/s41579-022-00846-2
3. Choutka J, Jansari V, Hornig M. et al. Author Correction: Unexplained post-acute infection syndromes. Nat. Med. 2022; 28: 911–923. doi: 10.1038/s41591-022-01952-7
4. Fitzcharles M-A, Cohen SP, Clauw DJ. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet. 2021; 397: 2098–2110. DOI: 10.1016/S0140–6736(21)00392-5
5. Shen Q, Joyce EE, Ebrahimi OV. et al. COVID-19 illness severity and 2-year prevalence of physical symptoms: an observational study in Iceland, Sweden, Norway and Denmark. Lancet Reg Health Eur. 2023 Oct 27; 35: 100756. DOI: 10.1016/j.lanepe.2023.100756
6. Huang C, Huang L, Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2023; 401 (10393): e21–e33. DOI: 10.1016/S0140-6736(23)00810-3
7. Huang L, Li X, Gu X. et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022; 10: 863–76. DOI: 10.1016/S2213-2600(22)00126-6
8. Kelly JD, Curteis T, Rawal A. et al. SARS-CoV-2 post-acute sequelae in previously hospitalised patients: systematic literature review and meta-analysis. Eur. Respir. Rev. 2023; 32: 220254. DOI: 10.1183/16000617.0254-2022
9. Lee JH, Yim JJ, Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19 : a systematic review and meta-analysis. Respir. Res. 2022; 23: 233. DOI: 10.1186/s12931-022-02163-x
10. Alilou S, Zangiabadian M, Pouramini A. et al. Radiological Findings as Predictors of COVID-19 Lung Sequelae : A Systematic Review and Meta-analysis. Acad Radiol. 2023; 30 (12): 3076–3085. DOI: 10.1016/j.acra.2023.06.002
11. Wang W, Wang CY, Wang SI, Wei JC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine. 2022; 53: 101619. DOI: 10.1016/j.eclinm.2022.101619
12. Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023; 29: 2347–2357. doi: 10.1038/s41591-023-02521-2
13. Heidemann C, Sarganas G, Du Y. et al. Long-term health consequences among individuals with SARS-CoV-2 infection compared to individuals without infection: results of the population-based cohort study CoMoLo Follow-up. BMC Public Health. 2023; 23: 1587. DOI: 10.1186/s12889-023-16524-8
14. Gouraud C, Thoreux P, Ouazana-Vedrines C. et al. Patients with persistent symptoms after COVID-19 attending a multidisciplinary evaluation: characteristics, medical conclusions, and satisfaction. J. Psychosom. Res. 2023;174: 111475. DOI: 10.1016/j.jpsychores.2023.111475
15. Whitaker M, Elliott J, Chadeau-Hyam. et al. Persistent COVID-19 symptoms in a community study of 604,434 people in England. Nat. Commun. 2022; 13: 1957. DOI: 10.1038/s41467-022-29521-z
16. Walker S, Goodfellow H, Pookarnjanamorakot P. et al. Impact of fatigue as the primary determinant of functional limitations among patients with post-COVID- 19 syndrome: a cross-sectional observational study. BMJ Open. 2023; 13 (6): e069217. DOI: 10.1136/bmjopen-2022-069217
17. Townsend L, Dyer AH, Jones K. et al. Persistent fatigue following SARS- CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020; 15 (11): e0240784. DOI: 10.1371/journal.pone.0240784
18. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21: 133–46. DOI: 10.1038/s41579-022-00846-2
19. Jason LA, Dorri JA. ME/CFS and post-exertional malaise among patients with Long COVID. Neurol. Int. 2023; 15: 1–11. DOI: 10.3390/neurolint15010001
20. Reuken PA, Besteher B, Finke K. et al. Longterm course of neuropsychological symptoms and ME/CFS after SARS-CoV-2-infection: a prospective registry study. Eur. Arch Psychiatry Clin. Neurosci. 2023; Aug 16. DOI: 10.1007/s00406-023-01661-3
21. Bonilla H, Quach TC, Tiwari A. et al. Myalgic encephalomyelitis/chronic fatigue syndrome is common in post-acute sequelae of SARS-CoV-2 infection (PASC): results from a post-COVID-19 multispecialty clinic. Front Neurol. 2023; 14: 1090747. DOI: 10.3389/fneur.2023.1090747
22. Legler F, Meyer-Arndt L, Modl L. et al. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort. EClinicalMedicine. 2023; 63: 102146. DOI: 10.1016/j.eclinm.2023.102146
23. Goldenberg DL. Applying lessons from rheumatology to better understand Long COVID. Arthritis Care Res. 2024; 76 (1): 49–56. doi: 10.1002/acr.25210
24. Ceban F, Ling S, Lui LMW. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome : a systematic review and meta-analysis. Brain. Behav. Immun. 2022; 101: 93–135. DOI: 10.1016/j.bbi.2021.12.020
25. Nicotra A, Masserini F, Calcaterra F. et al. What do we mean by long COVID? A scoping review of the cognitive sequelae of SARS-CoV-2 infection. Eur. J. Neurol. 2023; 30 (12): 3968–78. doi: 10.1111/ene.16027
26. Kao J, Frankland PW. COVID fog demystified. Cell. 2022; 185: 2391–3. DOI: 10.1016/j.cell.2022.06.020
27. Perez Giraldo GS, Ali ST, Kang AK. et al. Neurologic manifestations of long COVID differ based on acute COVID-19 severity. Ann Neurol. 2023; 94: 146–59. DOI: 10.1002/ana.26649
28. Ariza M, Cano N, Segura B. et al. COVID-19 severity is related to poor executive function in people with post-COVID conditions. J. Neurol. 2023; 270: 2392–408. DOI: 10.1007/s00415-023-11587-4
29. Mateu L, Tebe C, Loste C. et al. Determinants of the onset and prognosis of the post-COVID-19 condition: a 2-year prospective observational cohort study. Lancet Reg Health. 2023; 23: 100724. doi: 10.1016/j.lanepe.2023.100724.
30. Whiteside DM, Basso MR, Naini SM. et al. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection Part 1: cognitive functioning. Clin. Neuropsychol. 2022; 36: 806–28. DOI: 10.1080/13854046.2022.2030412
31. Rodrigues AN, Dias ARD, Paranhos ACM. et al. Headache in long COVID as disabling condition: a clinical approach. Front Neurol. 2023; 14: 1149294. DOI: 10.3389/fneur.2023.1149294
32. Seighali N, Abdollahi A, Shafiee A. et al. The global prevalence of depression, anxiety, and sleep disorder among patients coping with Post COVID-19 syndrome (long COVID) : a systematic review and meta-analysis. BMC Psychiatry. 2024; 24 (1): 105. DOI: 10.1186/s12888-023-05481-6
33. Chinvararak C, Chalder T. Prevalence of sleep disturbances in patients with long COVID assessed by standardised questionnaires and diagnostic criteria : a systematic review and meta-analysis. J. Psychosom. Res. 2023; 175: 111535. DOI: 10.1016/j.jpsychores.2023.111535
34. Merikanto I, Dauvilliers Y, Chung F. et al. Sleep symptoms are essential features of long-COVID – Comparing healthy controls with COVID-19 cases of different severity in the international COVID sleep study (ICOSS-II). J. Sleep. Res. 2023; 32 (1): e13754. DOI: 10.1111/jsr.13754
35. Tanski W, Tomasiewicz A, Jankowska-Polanska B. Sleep disturbances as a consequence of long-COVID 19. J. Clin. Med. 2024; 13 (3): 839. doi: 10.3390/jcm13030839
36. Mandel HL, Colleen G, Abedian S. et al. Risk of post-acute sequelae of SARS-CoV-2 infection associated with pre-coronavirus disease obstructive sleep apnea diagnoses: an electronic health record-based analysis from the RECOVER initiative. Sleep. 2023; 46 (9): zsad126. DOI: 10.1093/sleep/zsad126
37. Xie Y, Xu E, Al-Aly Z. Risks of mental health outcomes in people with COVID-19: cohort study. BMJ. 2022; 376: e068993. DOI: 10.1136/bmj-2021-068993
38. Zhang Y, Chinchilli VM, Ssentongo P. et al. Association of Long COVID with mental health disorders: a retrospective cohort study using real-world data from the USA. BMJ Open. 2024; 14 (2): e079267. doi: 10.1136/bmjopen-2023-079267
39. Sneller MC, Liang CJ, Marques AR. et al. A longitudinal study of COVID-19 sequelae and immunity: baseline findings. Ann Intern Med. 2022; 175: 969–79. DOI: 10.7326/M21–4905
40. Peluso MJ, Thomas IL, Munter SE. et al. Lack of antinuclear antibodies in convalescent coronavirus disease 2019 patients with persistent symptoms. Clin. Infect. Dis. 2022; 74 (11): 2083–2084. DOI: 10.1093/cid/ciab890
41. Phetsouphanh C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022; 23: 210–6. doi: 10.1038/s41590-021-01113-x
42. Muri J, Cecchinato V, Cavalli A. et al. Autoantbodies against chemokines post- SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023; 24: 604–611. DOI: 10.1038/s41590-023-01445-w
43. Petersen EL, Gobling A, Adam G. et al. multi-organ assessment in mainly non-hospitalized individuals after SARS- CoV-2 infection: the Hamburg City Health Study COVID programme. Eur. Heart J. 2022; 43: 1124–37. DOI: 10.1093/eurheartj/ehab914
44. Dennis A, Cuthbertson DJ, Wootton D. et al. Multi-organ impairment and long COVID: a 1 year prospective, longitudinal study. J. R. Soc. Men. 2023; 11: 97–112. DOI: 10.1177/01410768231154703
45. Duffy C, Pridgen WL, Whitley RJ. Gastric herpes simplex virus type 1 infection is associated with functional gastrointestinal disorders in the presence and absence of comorbid fibromyalgia: a pilot case-control study. Infection. 2022; 50: 1303–11. DOI: 10.1007/s15010–022–01823-w
46. Peluso MJ, Deveau TM, Munter SE. et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Invest. 2023; 133: e163669. DOI: 10.1172/JCI163669
47. Shafiee A, Teymouri Athar M. et al. Reactivation of herpesviruses during COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2023; 33: e2437. DOI: 10.1002/rmv.2437
48. Minerbi M, Fitzcharles A. Gut microbiome: pertinence in fibromyalgia. Clin. Exp. Rheumatol. 2020; 38: S 99–104.
49. Yeoh Y, Zuo T, Lui G. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70: 698–706. DOI: 10.1136/gutjnl-2020-323020
50. Groven N, Reitan S, Fors E. et al. Kynurenine metabolites and ratios differ between chronic fatigue syndrome, fibromyalgia, and healthy controls. Psychoneuroendocrinology. 2021; 131: 105287. DOI: 10.1016/j.psyneuen.2021.105287
51. Holmes E, Wist J, Masuda R. et al. Incomplete systemic recovery and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 patients: implications for assessment of post-acute COVID-19 syndrome. J. Proteome Res. 2021; 20: 3315–29. DOI: 10.1021/acs.jproteome.1c00224
52. Wong AC, Devason AS, Umana IC. et al. Serotonin reduction in post-acute sequelae of viral infection. Cell. 2023; 186 (22): 4851–4867.e20. doi: 10.1016/j.cell.2023.09.013
53. Garcia-Hernandez A, de la Coba P, Reyes Del Paso GA. Central sensitization pain and autonomic deficiencies in fibromyalgia. Clin. Exp. Rheumatol. 2022; 40: 1202–9.
54. Larsen NW, Stiles LE, Shaik R. et al. Characterization of autonomic symptom burden in long COVID: a global survey of 2,314 adults. Front Neurol. 2022; 13: 1012668. DOI: 10.3389/fneur.2022.1012668
55. Stella AB, Furlanis G, Frezza NA. et al. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: a prospective multidomain observational study. J. Neurol. 2022; 269: 587–96. DOI: 10.1007/s00415-021-10735-y
56. Natelson B, Lin J, Blate M. et al. Physiological assessment of orthostatic intolerance in chronic fatigue syndrome. J. Transl. Med. 2022; 20: 95. DOI: 10.1186/s12967-022-03289-8
57. Malkova AM, Shoenfeld Y. Autoimmune autonomic nervous system imbalance and conditions: chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmun Rev. 2023; 22 (1): 103230. doi: 10.1016/j.autrev.2022.103230
58. Beiner E, Lucas V, Reichert J. et al. Stress biomarkers in individuals with fibromyalgia syndrome : a systematic review with meta-analysis. Pain. 2023; 164: 1416–27. DOI: 10.1097/j.pain.0000000000002857
59. Su Y, Yuan D, Chen DG. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022; 185: 881–95. DOI: 10.1016/j.cell.2022.01.014
60. Lee JS, Choi Y, Joung JY. et al. Clinical and laboratory characteristics of fatigue-dominant long-COVID subjects: a cross-sectional study. Am. J. Med. 2024 Feb 6: S 0002–9343 (24) 00057-3. DOI: 10.1016/j.amjmed.2024.01.025
61. Ryabkova V, Gavrilova N, Poletaeva A. et al. Autoantibody correlation signatures in fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: association with symptom severity. Biomedicines. 2023; 11: 257. Doi: 10.3390/biomedicines11020257
62. Huang Y, Ling G, Manyande A. et al. Brain imaging changes in patients recovered from COVID-19: a narrative review. Front Neurosci. 2022: 16. doi: 10.3389/fnins.2022.855868
63. Churchill NW, Roudala E, Chen JJ. et al. Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Front Neurol. 2023; 14: 1136408. doi: 10.3389/fneur.2023.1136408
64. Voruz P, Cionca A, de Alcantara IJ. et al. Brain functional connectivity alterations associated with neuropsychological performance 6–9 months following SARS-CoV-2 infection. Hum Brain Mapp. 2023; 44: 1629–46. DOI: 10.1002/hbm.26163
65. Wakatsuki K, Kiryu-Seo S, Yasui M. et al. Repeated cold stress, an animal model for fibromyalgia, elicits proprioceptor-induced chronic pain with microglial activation in mice. J. Neuroinflammation. 2024; 21: 25. DOI: 10.1186/s12974-024-03018-6
66. Albrecht DS, Forsberg A, Sandstrom A. et al. Brain glial activation in fibromyalgia – a multi-site positron emission tomography investigation. Brain Behav Immun. 2019; 75: 72–83. DOI: 10.1016/j.bbi.2018.09.018
67. Krock E, Morado-Urbina CE, Menezes J. et al. Fibromyalgia patients with elevated levels of anti-satellite glia cell immunoglobulin G antibodies present with more severe symptoms. Pain. 2023; 164: 1828–40. DOI: 10.1097/j.pain.0000000000002881
68. Ferń andez-Castañeda A, Lu P, Geraghty AC. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022; 185: 2452–2468. doi: 10.1016/j.cell.2022.06.008
69. Coste J, Delpierre C, Richard JB. et al. Prevalence of long COVID in the general adult population according to different definitions and sociodemographic and infection characteristics. A nationwide random sampling survey in France in autumn 2022. Clin Microbiol Infect. 2024; 30 (7): 924–929. DOI: 10.1016/j.cmi.2024.03.020
70. Hoeg TB, Ladhani S, Prasad V. How methodological pitfalls have created widespread misunderstanding about long COVID. BMJ Evid Based Med. 2024; 29 (3): 142–146. DOI: 10.1136/bmjebm-2023-112338
Review
For citations:
Aronova E.S., Belov B.S., Gridneva G.I. Post-covid syndrome as a dysfunctional pain disorder: current data. Medical alphabet. 2024;(29):24-28. (In Russ.) https://doi.org/10.33667/2078-5631-2024-29-24-28