Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Постковидный синдром как дисфункциональное болевое расстройство: актуальные данные

https://doi.org/10.33667/2078-5631-2024-29-24-28

Аннотация

   Представления о постковидном синдроме (ПКС) как о самостоятельной нозологической единице лежат в основе поиска критериев для установления этого диагноза. К настоящему моменту сложилось представление о двух клинических фенотипах постковидного состояния, протекающих с разным патогенетическим механизмом. Один из них, вероятно, представляет собой последствия перенесенного в ходе COVID-19 повреждения органов и систем и/или ятрогенных факторов. Патогенез другого не вполне ясен, а клинические проявления аналогичны таковым ряда дисфункциональных болевых расстройств, таких как фибромиалгия (ФМ) и синдром хронической усталости/миалгический энцефаломиелит. Статья посвящена анализу литературных данных, указывающих на сходство ПКС и ФМ. Обоснована необходимость пересмотра критериев диагноза ПКС.

Об авторах

Е. С. Аронова
ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой»
Россия

Евгения Сергеевна Аронова, к. м. н., научный сотрудник

Лаборатория коморбидных инфекций и вакцинопрофилактики

Москва



Б. С. Белов
ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой»
Россия

Борис Сергеевич Белов, д. м. н., зав. лабораторией

Лаборатория коморбидных инфекций и вакцинопрофилактики

Москва



Г. И. Гриднева
ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой»
Россия

Галина Игоревна Гриднева, к. м. н., научный сотрудник

Лаборатория коморбидных инфекций и вакцинопрофилактики

Москва



Список литературы

1. World Health Organisation (WHO). A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition_Clinical_case_definition-2021.1 (Accessed:14<sup>th</sup> September, 2024).

2. Davis HE, McCorkell L, Vogel JM. et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21: 133–146. doi: 10.1038/s41579-022-00846-2

3. Choutka J, Jansari V, Hornig M. et al. Author Correction: Unexplained post-acute infection syndromes. Nat. Med. 2022; 28: 911–923. doi: 10.1038/s41591-022-01952-7

4. Fitzcharles M-A, Cohen SP, Clauw DJ. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet. 2021; 397: 2098–2110. DOI: 10.1016/S0140–6736(21)00392-5

5. Shen Q, Joyce EE, Ebrahimi OV. et al. COVID-19 illness severity and 2-year prevalence of physical symptoms: an observational study in Iceland, Sweden, Norway and Denmark. Lancet Reg Health Eur. 2023 Oct 27; 35: 100756. DOI: 10.1016/j.lanepe.2023.100756

6. Huang C, Huang L, Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2023; 401 (10393): e21–e33. DOI: 10.1016/S0140-6736(23)00810-3

7. Huang L, Li X, Gu X. et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022; 10: 863–76. DOI: 10.1016/S2213-2600(22)00126-6

8. Kelly JD, Curteis T, Rawal A. et al. SARS-CoV-2 post-acute sequelae in previously hospitalised patients: systematic literature review and meta-analysis. Eur. Respir. Rev. 2023; 32: 220254. DOI: 10.1183/16000617.0254-2022

9. Lee JH, Yim JJ, Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19 : a systematic review and meta-analysis. Respir. Res. 2022; 23: 233. DOI: 10.1186/s12931-022-02163-x

10. Alilou S, Zangiabadian M, Pouramini A. et al. Radiological Findings as Predictors of COVID-19 Lung Sequelae : A Systematic Review and Meta-analysis. Acad Radiol. 2023; 30 (12): 3076–3085. DOI: 10.1016/j.acra.2023.06.002

11. Wang W, Wang CY, Wang SI, Wei JC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine. 2022; 53: 101619. DOI: 10.1016/j.eclinm.2022.101619

12. Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023; 29: 2347–2357. doi: 10.1038/s41591-023-02521-2

13. Heidemann C, Sarganas G, Du Y. et al. Long-term health consequences among individuals with SARS-CoV-2 infection compared to individuals without infection: results of the population-based cohort study CoMoLo Follow-up. BMC Public Health. 2023; 23: 1587. DOI: 10.1186/s12889-023-16524-8

14. Gouraud C, Thoreux P, Ouazana-Vedrines C. et al. Patients with persistent symptoms after COVID-19 attending a multidisciplinary evaluation: characteristics, medical conclusions, and satisfaction. J. Psychosom. Res. 2023;174: 111475. DOI: 10.1016/j.jpsychores.2023.111475

15. Whitaker M, Elliott J, Chadeau-Hyam. et al. Persistent COVID-19 symptoms in a community study of 604,434 people in England. Nat. Commun. 2022; 13: 1957. DOI: 10.1038/s41467-022-29521-z

16. Walker S, Goodfellow H, Pookarnjanamorakot P. et al. Impact of fatigue as the primary determinant of functional limitations among patients with post-COVID- 19 syndrome: a cross-sectional observational study. BMJ Open. 2023; 13 (6): e069217. DOI: 10.1136/bmjopen-2022-069217

17. Townsend L, Dyer AH, Jones K. et al. Persistent fatigue following SARS- CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020; 15 (11): e0240784. DOI: 10.1371/journal.pone.0240784

18. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21: 133–46. DOI: 10.1038/s41579-022-00846-2

19. Jason LA, Dorri JA. ME/CFS and post-exertional malaise among patients with Long COVID. Neurol. Int. 2023; 15: 1–11. DOI: 10.3390/neurolint15010001

20. Reuken PA, Besteher B, Finke K. et al. Longterm course of neuropsychological symptoms and ME/CFS after SARS-CoV-2-infection: a prospective registry study. Eur. Arch Psychiatry Clin. Neurosci. 2023; Aug 16. DOI: 10.1007/s00406-023-01661-3

21. Bonilla H, Quach TC, Tiwari A. et al. Myalgic encephalomyelitis/chronic fatigue syndrome is common in post-acute sequelae of SARS-CoV-2 infection (PASC): results from a post-COVID-19 multispecialty clinic. Front Neurol. 2023; 14: 1090747. DOI: 10.3389/fneur.2023.1090747

22. Legler F, Meyer-Arndt L, Modl L. et al. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort. EClinicalMedicine. 2023; 63: 102146. DOI: 10.1016/j.eclinm.2023.102146

23. Goldenberg DL. Applying lessons from rheumatology to better understand Long COVID. Arthritis Care Res. 2024; 76 (1): 49–56. doi: 10.1002/acr.25210

24. Ceban F, Ling S, Lui LMW. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome : a systematic review and meta-analysis. Brain. Behav. Immun. 2022; 101: 93–135. DOI: 10.1016/j.bbi.2021.12.020

25. Nicotra A, Masserini F, Calcaterra F. et al. What do we mean by long COVID? A scoping review of the cognitive sequelae of SARS-CoV-2 infection. Eur. J. Neurol. 2023; 30 (12): 3968–78. doi: 10.1111/ene.16027

26. Kao J, Frankland PW. COVID fog demystified. Cell. 2022; 185: 2391–3. DOI: 10.1016/j.cell.2022.06.020

27. Perez Giraldo GS, Ali ST, Kang AK. et al. Neurologic manifestations of long COVID differ based on acute COVID-19 severity. Ann Neurol. 2023; 94: 146–59. DOI: 10.1002/ana.26649

28. Ariza M, Cano N, Segura B. et al. COVID-19 severity is related to poor executive function in people with post-COVID conditions. J. Neurol. 2023; 270: 2392–408. DOI: 10.1007/s00415-023-11587-4

29. Mateu L, Tebe C, Loste C. et al. Determinants of the onset and prognosis of the post-COVID-19 condition: a 2-year prospective observational cohort study. Lancet Reg Health. 2023; 23: 100724. doi: 10.1016/j.lanepe.2023.100724.

30. Whiteside DM, Basso MR, Naini SM. et al. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection Part 1: cognitive functioning. Clin. Neuropsychol. 2022; 36: 806–28. DOI: 10.1080/13854046.2022.2030412

31. Rodrigues AN, Dias ARD, Paranhos ACM. et al. Headache in long COVID as disabling condition: a clinical approach. Front Neurol. 2023; 14: 1149294. DOI: 10.3389/fneur.2023.1149294

32. Seighali N, Abdollahi A, Shafiee A. et al. The global prevalence of depression, anxiety, and sleep disorder among patients coping with Post COVID-19 syndrome (long COVID) : a systematic review and meta-analysis. BMC Psychiatry. 2024; 24 (1): 105. DOI: 10.1186/s12888-023-05481-6

33. Chinvararak C, Chalder T. Prevalence of sleep disturbances in patients with long COVID assessed by standardised questionnaires and diagnostic criteria : a systematic review and meta-analysis. J. Psychosom. Res. 2023; 175: 111535. DOI: 10.1016/j.jpsychores.2023.111535

34. Merikanto I, Dauvilliers Y, Chung F. et al. Sleep symptoms are essential features of long-COVID – Comparing healthy controls with COVID-19 cases of different severity in the international COVID sleep study (ICOSS-II). J. Sleep. Res. 2023; 32 (1): e13754. DOI: 10.1111/jsr.13754

35. Tanski W, Tomasiewicz A, Jankowska-Polanska B. Sleep disturbances as a consequence of long-COVID 19. J. Clin. Med. 2024; 13 (3): 839. doi: 10.3390/jcm13030839

36. Mandel HL, Colleen G, Abedian S. et al. Risk of post-acute sequelae of SARS-CoV-2 infection associated with pre-coronavirus disease obstructive sleep apnea diagnoses: an electronic health record-based analysis from the RECOVER initiative. Sleep. 2023; 46 (9): zsad126. DOI: 10.1093/sleep/zsad126

37. Xie Y, Xu E, Al-Aly Z. Risks of mental health outcomes in people with COVID-19: cohort study. BMJ. 2022; 376: e068993. DOI: 10.1136/bmj-2021-068993

38. Zhang Y, Chinchilli VM, Ssentongo P. et al. Association of Long COVID with mental health disorders: a retrospective cohort study using real-world data from the USA. BMJ Open. 2024; 14 (2): e079267. doi: 10.1136/bmjopen-2023-079267

39. Sneller MC, Liang CJ, Marques AR. et al. A longitudinal study of COVID-19 sequelae and immunity: baseline findings. Ann Intern Med. 2022; 175: 969–79. DOI: 10.7326/M21–4905

40. Peluso MJ, Thomas IL, Munter SE. et al. Lack of antinuclear antibodies in convalescent coronavirus disease 2019 patients with persistent symptoms. Clin. Infect. Dis. 2022; 74 (11): 2083–2084. DOI: 10.1093/cid/ciab890

41. Phetsouphanh C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022; 23: 210–6. doi: 10.1038/s41590-021-01113-x

42. Muri J, Cecchinato V, Cavalli A. et al. Autoantbodies against chemokines post- SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023; 24: 604–611. DOI: 10.1038/s41590-023-01445-w

43. Petersen EL, Gobling A, Adam G. et al. multi-organ assessment in mainly non-hospitalized individuals after SARS- CoV-2 infection: the Hamburg City Health Study COVID programme. Eur. Heart J. 2022; 43: 1124–37. DOI: 10.1093/eurheartj/ehab914

44. Dennis A, Cuthbertson DJ, Wootton D. et al. Multi-organ impairment and long COVID: a 1 year prospective, longitudinal study. J. R. Soc. Men. 2023; 11: 97–112. DOI: 10.1177/01410768231154703

45. Duffy C, Pridgen WL, Whitley RJ. Gastric herpes simplex virus type 1 infection is associated with functional gastrointestinal disorders in the presence and absence of comorbid fibromyalgia: a pilot case-control study. Infection. 2022; 50: 1303–11. DOI: 10.1007/s15010–022–01823-w

46. Peluso MJ, Deveau TM, Munter SE. et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Invest. 2023; 133: e163669. DOI: 10.1172/JCI163669

47. Shafiee A, Teymouri Athar M. et al. Reactivation of herpesviruses during COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2023; 33: e2437. DOI: 10.1002/rmv.2437

48. Minerbi M, Fitzcharles A. Gut microbiome: pertinence in fibromyalgia. Clin. Exp. Rheumatol. 2020; 38: S 99–104.

49. Yeoh Y, Zuo T, Lui G. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70: 698–706. DOI: 10.1136/gutjnl-2020-323020

50. Groven N, Reitan S, Fors E. et al. Kynurenine metabolites and ratios differ between chronic fatigue syndrome, fibromyalgia, and healthy controls. Psychoneuroendocrinology. 2021; 131: 105287. DOI: 10.1016/j.psyneuen.2021.105287

51. Holmes E, Wist J, Masuda R. et al. Incomplete systemic recovery and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 patients: implications for assessment of post-acute COVID-19 syndrome. J. Proteome Res. 2021; 20: 3315–29. DOI: 10.1021/acs.jproteome.1c00224

52. Wong AC, Devason AS, Umana IC. et al. Serotonin reduction in post-acute sequelae of viral infection. Cell. 2023; 186 (22): 4851–4867.e20. doi: 10.1016/j.cell.2023.09.013

53. Garcia-Hernandez A, de la Coba P, Reyes Del Paso GA. Central sensitization pain and autonomic deficiencies in fibromyalgia. Clin. Exp. Rheumatol. 2022; 40: 1202–9.

54. Larsen NW, Stiles LE, Shaik R. et al. Characterization of autonomic symptom burden in long COVID: a global survey of 2,314 adults. Front Neurol. 2022; 13: 1012668. DOI: 10.3389/fneur.2022.1012668

55. Stella AB, Furlanis G, Frezza NA. et al. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: a prospective multidomain observational study. J. Neurol. 2022; 269: 587–96. DOI: 10.1007/s00415-021-10735-y

56. Natelson B, Lin J, Blate M. et al. Physiological assessment of orthostatic intolerance in chronic fatigue syndrome. J. Transl. Med. 2022; 20: 95. DOI: 10.1186/s12967-022-03289-8

57. Malkova AM, Shoenfeld Y. Autoimmune autonomic nervous system imbalance and conditions: chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmun Rev. 2023; 22 (1): 103230. doi: 10.1016/j.autrev.2022.103230

58. Beiner E, Lucas V, Reichert J. et al. Stress biomarkers in individuals with fibromyalgia syndrome : a systematic review with meta-analysis. Pain. 2023; 164: 1416–27. DOI: 10.1097/j.pain.0000000000002857

59. Su Y, Yuan D, Chen DG. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022; 185: 881–95. DOI: 10.1016/j.cell.2022.01.014

60. Lee JS, Choi Y, Joung JY. et al. Clinical and laboratory characteristics of fatigue-dominant long-COVID subjects: a cross-sectional study. Am. J. Med. 2024 Feb 6: S 0002–9343 (24) 00057-3. DOI: 10.1016/j.amjmed.2024.01.025

61. Ryabkova V, Gavrilova N, Poletaeva A. et al. Autoantibody correlation signatures in fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: association with symptom severity. Biomedicines. 2023; 11: 257. Doi: 10.3390/biomedicines11020257

62. Huang Y, Ling G, Manyande A. et al. Brain imaging changes in patients recovered from COVID-19: a narrative review. Front Neurosci. 2022: 16. doi: 10.3389/fnins.2022.855868

63. Churchill NW, Roudala E, Chen JJ. et al. Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Front Neurol. 2023; 14: 1136408. doi: 10.3389/fneur.2023.1136408

64. Voruz P, Cionca A, de Alcantara IJ. et al. Brain functional connectivity alterations associated with neuropsychological performance 6–9 months following SARS-CoV-2 infection. Hum Brain Mapp. 2023; 44: 1629–46. DOI: 10.1002/hbm.26163

65. Wakatsuki K, Kiryu-Seo S, Yasui M. et al. Repeated cold stress, an animal model for fibromyalgia, elicits proprioceptor-induced chronic pain with microglial activation in mice. J. Neuroinflammation. 2024; 21: 25. DOI: 10.1186/s12974-024-03018-6

66. Albrecht DS, Forsberg A, Sandstrom A. et al. Brain glial activation in fibromyalgia – a multi-site positron emission tomography investigation. Brain Behav Immun. 2019; 75: 72–83. DOI: 10.1016/j.bbi.2018.09.018

67. Krock E, Morado-Urbina CE, Menezes J. et al. Fibromyalgia patients with elevated levels of anti-satellite glia cell immunoglobulin G antibodies present with more severe symptoms. Pain. 2023; 164: 1828–40. DOI: 10.1097/j.pain.0000000000002881

68. Ferń andez-Castañeda A, Lu P, Geraghty AC. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022; 185: 2452–2468. doi: 10.1016/j.cell.2022.06.008

69. Coste J, Delpierre C, Richard JB. et al. Prevalence of long COVID in the general adult population according to different definitions and sociodemographic and infection characteristics. A nationwide random sampling survey in France in autumn 2022. Clin Microbiol Infect. 2024; 30 (7): 924–929. DOI: 10.1016/j.cmi.2024.03.020

70. Hoeg TB, Ladhani S, Prasad V. How methodological pitfalls have created widespread misunderstanding about long COVID. BMJ Evid Based Med. 2024; 29 (3): 142–146. DOI: 10.1136/bmjebm-2023-112338


Рецензия

Для цитирования:


Аронова Е.С., Белов Б.С., Гриднева Г.И. Постковидный синдром как дисфункциональное болевое расстройство: актуальные данные. Медицинский алфавит. 2024;(29):24-28. https://doi.org/10.33667/2078-5631-2024-29-24-28

For citation:


Aronova E.S., Belov B.S., Gridneva G.I. Post-covid syndrome as a dysfunctional pain disorder: current data. Medical alphabet. 2024;(29):24-28. (In Russ.) https://doi.org/10.33667/2078-5631-2024-29-24-28

Просмотров: 249


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)