Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Тепловизионный паспорт здоровья ребенка, занимающегося спортом, как основа динамического контроля его успешности в выбранном виде спорта

https://doi.org/10.33667/2078-5631-2024-22-41-46

Аннотация

Нарративный обзор посвящен обоснованию целесообразности применения инфракрасного тепловидения в детском спорте. Рассмотрены возможности тепловидения в спортивной физиологии и медицине, концепция «тепловизионного паспорта здоровья спортсмена», варианты использования метода в тренировочном и соревновательном периодах, его эффективность в профилактике спортивного травматизма. Показана практическая ценность тепловидения в комплексном подходе для мониторинга здоровья, оценки производительности и выявлении потенциальных проблем на протяжении всей спортивной карьеры ребенка.

Об авторах

М. Г. Воловик
ФГБОУ ВО «ПИМУ» Минздрава России; ООО «Дигносис»
Россия

Воловик Михаил Григорьевич, д. б. н., в. н. с.

Нижний Новгород;

Москва



И. М. Долгов
ООО «Дигносис»
Россия

Долгов Игорь Маратович, д. м. н., заместитель Генерального директора

Москва



Список литературы

1. Felfe C., Lechner M., Steinmayr A. Sports and Child Development // PLoS ONE. 2016;11(5):e0151729. https://doi.org/10.1371/journal.pone.0151729.

2. Matejek Č., Starc G. The relationship between children’s physical fitness and gender, age and environmental factors // Ann Kinesiol. [in the Internet]. 2013. Vol. 4, no. 2, p. 95–108. PID: 20.500.12556/DKUM-66983.

3. Anatomy & Physiology. OpenStax. by L.M.Biga et al. Oregon State University, 2019. Chapter 10. Muscle Tissue; Chapter 11. The Muscular System. https://open.oregonstate.education/aandp/.

4. Nikolaidis P.T., Marinho D.A., Clemente-Suárez V.J., Son’kin V.D. Children’s Sports Physiology – The Early Studies // Physiologia 2023, 3, 113–118. https://doi.org/10.3390/physiologia3010009.

5. Погосян Т.А. Классификация возрастных периодов у спортсменов // Уч. зап. ун-та Лесгафта. 2018;6(160):178–182.

6. Hall E.C.R., Semenova E.A., Bondareva E.A. et al. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects // Biol Sport. 2021;38(4):659–666. DOI: 10.5114/biolsport.2021.102923.

7. Welle S., Tawil R., Thornton C.A. Sex-Related Differences in Gene Expression in Human Skeletal Muscle // PLoS ONE. 2008;3(1):e1385. https://doi.org/10.1371/journal.pone.0001385.

8. Plotkin D.L., Roberts M.D., Haun C.T., Schoenfeld B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives // Sports. 2021;9:127. https://doi.org/10.3390/sports9090127.

9. Hargreaves M., Spriet L.L. Skeletal muscle energy metabolism during exercise // Nat Metab. 2020;2:817–828. https://doi.org/10.1038/s42255-020-0251-4.

10. Notley S.R., Mitchell D., Taylor N.A.S. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise // Eur J Appl Physiol. 124, 1–145 (2024). https://doi.org/10.1007/s00421-023-05276-3.

11. Сонькин В.Д., Макарова Л.В., Параничева Т.М. Научно-методическое обеспечение сохранения и укрепления здоровья обучающихся в условиях образовательной организации (обзор литературы) // Новые исследования. Январь 2023. С. 7–21. DOI: 10.46742/2072-8840-2023-76-4-7-21.

12. Lin Y., Jin H., Jin Y., Kang J. Experimental study on the effects of exercise intensity and thermal environment on thermal responses // Building and Environment, 2023;232:110067. https://doi.org/10.1016/j.buildenv.2023.110067.

13. Matthews M.J., Kanungo S., Baker R.J., Kenter K. Exercise Physiology: A Review of Established Concepts and Current Questions // Physiologia 2024, 4, 202–212. https://doi.org/10.3390/physiologia4020011.

14. Aidar F.J., Matos D.G., Souza R.F. et al. Comparison of the Local Temperature, Lactate and Glucose After Three Different Strength Training Methods // Int J Exerc Sci. 2021;14(4):1408–1420. PMCID: PMC9017855.

15. Stepanyan L., Lalayan G. Heart rate variability features and their impact on athletes’ sports performance // J Phys Educ Sport (JPES). August 2023;23(8, Art 247):2156-2163.

16. Béjar-Grimalt J., Sánchez-Illana Á., de la Guardia M. et al. Dryfilm-ATR-FTIR analysis of urinary profiles as a point-of-care tool to evaluate aerobic exercise // Anal Methods. 2024. DOI: 10.1039/D4AY00913D.

17. Da Silva W., Godoy-López J.R., Machado Á.S. et al. Effect of different volumes of exercise on skin temperature responses over the following 24 hours // J Therm Biol. 2024;123:103923. https://doi.org/10.1016/j.jtherbio.2024.103923.

18. Moreira D.G., Costello J.T., Brito C.J. et al. Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature // J Therm Biol. July 2017;69:155–162. http://dx.doi.org/10.1016/j.jtherbio.2017.07.006.

19. Ачкасов Е.Е., Воловик М.Г., Долгов И.М., Колесов С.Н. Медицинское тепловидение. Уч. пос. М.: ИНФРА-М, 2019. 218 с. www.dx.doi.org/10.12737/textbook_5ce64de5707d59.18786697.

20. Application of Infrared Thermography in Sports Science. J.I.Priego Quesada (Editor). Valencia, Spain: Springer International Publishing AG, 2017. 327 p. DOI: 10.1007/978-3-319-47410-6.

21. Abate M., Di Carlo L., Di Donato L. et al. Comparison of cutaneous termic response to a standardized warm up in trained and untrained individuals // J Sports Med Phys Fitness. 2013;53(2):209–215. PMID:23584330.

22. Formenti D., Ludwig N., Gargano M. et al. Thermal imaging of excercise-assotiated temperature changes in trained and untrained female subjects // Ann Biomed Eng. 2013 Apr.;41(4):863–871. doi:10.1007/s10439-012-0718-x.

23. Kasprzyk-Kucewicz T., Stanek A., Sieroń-Stołtny K., Cholewka A. Thermal Imaging in Evaluation of the Physical Fitness Level. In book: Research Anthology on Business Strategies, Health Factors, and Ethical Implications in Sports and eSports, January 2021. Chapter. DOI: 10.4018/978-1-7998-7707-3.ch043.

24. Rodrigues Júnior J.F.C., Mckenna Z., Amorim F.T. et al. Thermoregulatory and metabolic responses to a half-marathon run in hot, humid conditions // J Therm Biol. 2020;93:102734. https://doi.org/10.1016/j.jtherbio.2020.102734.

25. Priego Quesada J.I., Carpes F.P. Application of Infrared Thermography in the Assessment of Sport Equipment. In book: Materials in Sports Equipment. January 2019. DOI: 10.1016/B978-0-08-102582-6.00002-2.

26. Neves E.B. Thermal Imaging in Sports: Athlete’s Thermal Passport // Motricidade. 2019;15(2–3):4–5. DOI: https://doi.org/10.6063/motricidade.18398.

27. Escamilla-Galindo V.E., Fernández Cuevas I., del Estal Martínez A. Description of the thermal pattern of 950 athletes using thermography to measure skin temperature // 27th Annual Congress of the European College of Sport Sciences ECSS. At: Sevilla, Spain, Sept. 2022.

28. Gómez-Carmona P.M., Fernández Cuevas I., Sillero Quintana M. et al. Infrared Thermography Protocol on Reducing the Incidence of Soccer Injuries // J Sport Rehab. March 2020;29(6). DOI: 10.1123/jsr.2019-0056.

29. Sanchis-Sanchis R., Priego Quesada J.I., Ribas-Garcia V. et al. Effects of asymmetrical exercise demands on the symmetry of skin temperature in archers // Physiol Meas. October 2020;41(11). DOI: 10.1088/1361-6579/abc020.

30. Arnaiz-Lastras J., Fernández-Cuevas I., Sillero-Quintana M. et al. Pilot study to determinate thermal asymmetries in judokas // 16th annual European Congress of Sport Sciences. Liverpool, UK, 6-9 July 2011.

31. Menezes P., Rhea M., Herdy C., Simão R. Effects of strength training program and infrared thermography in soccer athletes’ injuries // Sports. 2018;6:148. doi: 10.3390/sports6040148.

32. Dębiec-Bąk A., Skrzek A., Podbielska H. et al. Superficial temperature distribution patterns before and after physical activity in school children are indicative for personalized exercise coaching and disease prevention // EPMA Journal 12, 435-447 (2021). https://doi.org/10.1007/s13167-021-00262-1.

33. Sánchez-Jiménez J.L., Tejero-Pastor R., Calzadillas-Valles M.d.C. et al. Chronic and Acute Effects on Skin Temperature from a Sport Consisting of Repetitive Impacts from Hitting a Ball with the Hands // Sensors. 2022;22:8572. https://doi.org/10.3390/ s22218572.

34. Sillero Quintana M., Gómez Carmona P.M., Fernández Cuevas I. Infrared Thermography as a Means of Monitoring and Preventing Sports Injuries. In book: Research Anthology on Business Strategies, Health Factors, and Ethical Implications in Sports and eSports. January 2021. Chapter. DOI: 10.4018/978-1-7998-7707-3.ch046.

35. Kasprzyk-Kucewicz T., Szurko A., Stanek A. et al. Usefulness in Developing an Optimal Training Program and Distinguishing between Performance Levels of the Athlete’s Body by Using of Thermal Imaging // Int J Environ Res Public Health 2020;17:5698. doi:10.3390/ijerph17165698.

36. Neves E.B., Salamunes A.C.C., De Meneck F. et al. Correlations Between Anthropometric Measurements and Skin Temperature, at Rest and after a CrossFit®Training Workout. In book: XXVII Brazilian Congress on Biomedical Engineering, January 2022. Chapter. DOI: 10.1007/978-3-030-70601-2_233.

37. Wang J., Grant L. Using Infrared Thermal Imaging to Study the Response of Athletes to Overload Training // J Med Imaging Health Inform. August 2020;10(8):1967–1973. DOI: 10.1166/jmihi.2020.3097.

38. Vieira S.G., Sillero Quintana M., Gomes da Silva A. et al. Thermographic response resulting from strength training: A preliminary study // Apunts Sports Medicine. Oct. 2020;55(208):120–127. DOI: 10.1016/j.apunsm.2020.08.003.

39. Aylwin P.E., Racinais S., Adami P-E. et al. Evaluating the Application of Infra-Red Thermography to the Measurement of Skin Temperature During Road-Race Competition // Thermol Int. 31/3(2021):123–125.

40. Amaro A.M., Paulino M.F., Neto M.A., Roseiro L. Hand-arm vibration assessment and changes in the thermal map of the skin in tennis athletes during the service // Int J Environ Res Public Health. 2019;16(24), art. no. 5117. doi:10.3390/ijerph16245117.

41. Szurko A., Kasprzyk-Kucewicz T., Cholewka A. et al. Thermovision as a Tool for Athletes to Verify the Symmetry of Work of Individual Muscle Segments // Int J Environ Res Public Health. 2022;19:8490. https:// doi.org/10.3390/ijerph19148490.

42. Della Corte J., Pereira W.L.M., Corrêa E.E.L. S. et al. Influence of power and maximal strength training on thermal reaction and vertical jump performance in Brazilian basketball players: a preliminary study // Biomed Hum Kinet. 2020;12:91–100. DOI: 10.2478/bhk-2020-0012.

43. de Aquino Resende M., Aidar F.J., Resende R.B.V. et al. Are Strength Indicators and Skin Temperature Affected by the Type of Warm-Up in Paralympic Powerlifting Athletes? // Healthcare. 2021;9:923. https://doi.org/10.3390/healthcare9080923.

44. de Carvalho G., Girasol C.E., Goncalves L.G.C. et al. Correlation between skin temperature in the lower limbs and biochemical marker, performance data, and clinical recovery scales // PLoS ONE. 2021;16(3):e0248653. https://doi.org/10.1371/journal.pone.0248653.

45. Hillen B., Pfirrmann D., Nägele M., Simon P. Infrared thermography in exercise physiology: the dawning of exercise radiomics // Sports Med. 2019;50:1-20. DOI: 10.1007/s40279-019-01210-w.

46. Fernández-Cuevas I., Torres G., Sillero Quintana M., Navandar A. Thermographic assessment of skin response to strength training in young participants // J Therm Anal Calorim. 2023;148:3407–3415. DOI: 10.1007/s10973-023-11978-9.

47. de Andrade Fernandes A., Pimenta E.M., Moreira D.G. et al. Application of Infrared Thermography in the Assessment of Muscle Damage in Elite Soccer Athletes // MOJ Orthopedics & Rheumatology 2017;8(5):00328. DOI: 10.15406/mojor.2017.08.00328.

48. Weigert M., Nitzsche N., Kunert F. et al. Acute exercise-associated skin surface temperature changes after resistance training with different exercise intensities // Int J Kinesiol Sports Sci. 2018;6(1):12-18. DOI: https://doi.org/10.7575/aiac.ijkss.v.6n.1p.12.

49. ACSM. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults // Med Sci Sports Exerc. 2009;41(3):687–708. https://doi.org/10.1249/MSS.0b013e3181915670.

50. Fernández-Cuevas I., Gómez Carmona P.M., Sillero Quintana M. et al. Economic costs estimation of soccer injuries in first and second Spanish division professional teams // 15th Annual Congress of the European College of Sport Sciences ECSS, Antalya, Turkey. 2010.

51. Matteoli S., Fulceri S., Pasquini G., Corvi A. Thermography as a tool for evaluation and prevention of injuries in athlete // Gait & Posture, 2018. 66, S26. doi:10.1016/j.gaitpost.2018.07.140.

52. Noya J., Sillero M. [Injury incidence in Spanish professional football over a season: days off due to injury] // Apunts. Medicina de l’Esport. 2012;47(176):115–123. DOI: 10.1016/j.apunts.2011.10.001 [in Spanish].

53. Marins J.C.B., Fernandez-Cuevas I., Arnaiz-Lastras J. et al. [Applications of Infrared Thermography in Sports. A Review] // Revista Internacional de Medicina y Ciencias de la Actividad Física y el deporte. 2015;15(60):805-824. [in Spanish].

54. Воловик М.Г., Долгов И.М., Хрипковский Д.Н. Функциональные пробы в медицинском тепловидении. М: Дигносис, 2023. 128 с. DOI:10.12737/monography_646341497049a9.30616752.

55. Zhao Y., de Almeida e Bueno L., Holdsworth D.A., Bergmann J.H.M. Evaluating the Agreement between Oral, Armpit, and Ear Temperature Readings during Physical Activities in an Outdoor Setting // Int J Environ Res Public Health. 2024;21:595. https://doi.org/10.3390/ijerph21050595.

56. dos Santos Bunn P., Miranda M.E.K., Rodrigues A.I. et al. Infrared thermography and musculoskeletal injuries: A systematic review with meta-analysis // Infrared Phys Technol. 2020;109:103435. https://doi.org/10.1016/j.infrared.2020.103435.

57. Marzano-Felisatti J.M., Martinez-Amaya A., Priego-Quesada J.I. Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players // Appl Sci. 2023;13:628. https://doi.org/10.3390/app13010628.

58. Акимов Е.Б., Андреев Р.С., Каленов Ю.Н., Сонькин В.Д. Особенности инфракрасного температурного портрета детей младшего и старшего школьного возраста // Новые исследования. 2013. № 2 (35).

59. Сонькин В.Д., Тамбовцева Р.В. Развитие мышечной энергетики и работоспособности в онтогенезе. М.: Книжный дом «ЛИБРОКОМ», 2011. 368 с.

60. Reis H.H.T., Brito C.J., Silva A.G. et al. Can body mass index influence the skin temperature of adolescents? A preliminary study with the use of infrared thermography // Rev Bras Cineantropom Desempenho Hum 2022;24:e89769. DOI: http://doi. org/10.1590/1980-0037.2022v24e89769.


Рецензия

Для цитирования:


Воловик М.Г., Долгов И.М. Тепловизионный паспорт здоровья ребенка, занимающегося спортом, как основа динамического контроля его успешности в выбранном виде спорта. Медицинский алфавит. 2024;(22):41-46. https://doi.org/10.33667/2078-5631-2024-22-41-46

For citation:


Volovik M.G., Dolgov I.M. Thermal Imaging Health Passport for a Child Engaged in Sports as the Basis for Dynamic Monitoring of Their Success in a Chosen Sport. Medical alphabet. 2024;(22):41-46. (In Russ.) https://doi.org/10.33667/2078-5631-2024-22-41-46

Просмотров: 113


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)