Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Ключевые аспекты лабораторной диагностики поражения сердечно‑сосудистой системы при COVID‑19

https://doi.org/10.33667/2078-5631-2024-20-26-32

Аннотация

В данном обзоре литературы рассмотрены данные, характеризующие клиническое значение наиболее информативных лабораторных маркеров, позволяющих не только своевременно выявить патологию сердечно-сосудистой системы, но и оценить риск неблагоприятных исходов коронавирусной инфекции. К наиболее изученным относятся высокочувствительный Тропонин (hsTnI), Мозговой натрийуретический пептид (NT-proBNР), Д-димер. К перспективным лабораторным маркерам, требующим всестороннего изучения, можно отнести остеопонтин, стимулирующий фактор роста ST2, Галектоин-3 (Gal-3), копептин, эндотелин-1. При всем многообразии патологических состояний, которые сопровождаются увеличением концентраций указанных маркеров, их можно рассматривать как показатели, несомненно, заслуживающие пристального внимания при оценке больных COVID-19.

Об авторах

С. Я. Тазина
ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский университет)
Россия

Тазина Серафима Яковлевна - д.м.н., профессор кафедры ИПО.

Москва



И. Ю. Антипова
Клинический госпиталь ФКУЗ «Медико-санитарная часть Министерства внутренних дел России по г. Москве»
Россия

Антипова Ирина Юрьевна - врач-терапевт, зав. отделением консультативного отделения.

Москва



Т. А. Федорова
ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский университет)
Россия

Фёдорова Татьяна Алексеевна - д.м.н., профессор кафедры терапии ИПО.

Москва



А. П. Ройтман
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Ройтман Александр Польевич - д.м.н., профессор кафедры клинической лабораторной диагностики с курсом клинической иммунологии РНМАНПО.

Москва



А. В. Бугров
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Бугров Алексей Викторович - к.м.н., доцент кафедры клинической лабораторной диагностики с курсом клинической иммунологии РНМАНПО.

Москва



Список литературы

1. https://covid19.who.int/

2. Lu R, Zhao X, Li J, Niu P, Yang B et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565–574. doi: 10.1016/S0140–6736 (20) 30251-8.

3. Coopersmith CM, Antonelli M, Bauer SR et al. The Surviving Sepsis Campaign: Research Priorities for Coronavirus Disease 2019 in Critical Illness. Crit Care Med. 2021 Apr 1;49(4):598–622. doi:10.1097/CCM.0000000000004895. PMID: 33591008

4. Zizza A, Recchia V, Aloisi A, Guido M. Clinical features of COVID-19 and SARS epidemics. A literature review. J Prev Med Hyg. 2021 Apr 29;62(1): E 13-E 24. doi: 10.15167/2421–4248/jpmh2021.62.1.1680. PMID: 34322612; PMCID: PMC 8283653

5. Lippi G, Sanchis-Gomar F, Favaloro EJ, Lavie CJ, Henry BM. Coronavirus Disease 2019-Associated Coagulopathy. Mayo Clin Proc. 2021 Jan;96(1):203–217. doi: 10.1016/j.mayocp.2020.10.031. Epub 2020 Oct 31. PMID: 33413819; PMCID: PMC 7604017

6. Gattinoni L, Gattarello S, Steinberg I et al.. COVID-19 pneumonia: pathophysiology and management. Eur Respir Rev. 2021 Oct 20;30(162):210138. doi: 10.1183/16000617.0138–2021. PMID: 34670808; PMCID: PMC 8527244

7. Rahman S, Montero MTV, Rowe K et al. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol. 2021 May;14(5):601–621. doi: 10.1080/17512433.2021.1902303

8. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020 Jul;108(1):17–41. doi: 10.1002/JLB.3COVR0520–272R.

9. Corman VM, Landt O, Kaiser M et al.. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan;25(3):2000045. doi: 10.2807/1560–7917.ES.2020.25.3.2000045.

10. Lai CKC, Lam W. Laboratory testing for the diagnosis of COVID-19. Biochem Biophys Res Commun. 2021 Jan 29;538:226–230. doi: 10.1016/j.bbrc.2020.10.069. Epub 2020 Oct 28. PMID: 33139015; PMCID: PMC 7598306.

11. Hoffmann M, Kleine-Weber H, Schroeder S et al.. SARS-CoV-2 Cell Entry Depends on ACE 2 and TMPRSS 2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5. PMID: 32142651; PMCID: PMC 7102627

12. КТ-картина коронавирусной болезни: результат по итогам работы COVID-центра на базе НМИЦ кардиологии. / Д. В. Устюжанин, М. Б. Белькинд, С. А. Гаман [и др.] // Российский электронный журнал лучевой диагностики.– 2020.– No 10(2).– С. 27–38.

13. Клинические рекомендации РФ 2023, Коронавирусная инфекция – COVID-19 (версия 18).

14. Shi S, Qin M, Shen B et al.. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020 Jul 1;5(7):802–810. doi: 10.1001/jamacardio.2020.0950. PMID: 32211816; PMCID: PMC 7097841

15. Grasselli G, Zangrillo A, Zanella A. et al.; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 28;323(16):1574–1581. doi: 10.1001/jama.2020.5394.

16. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239–1242. doi: 10.1001/jama.2020.2648. PMID: 32091533.

17. Lala A, Johnson KW, Januzzi JL et al.. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J Am Coll Cardiol. 2020 Aug 4;76(5):533–546. doi: 10.1016/j.jacc.2020.06.007.

18. Semenzato L, Botton J, Drouin J et al.. Chronic diseases, health conditions and risk of COVID-19-related hospitalization and in-hospital mortality during the first wave of the epidemic in France: a cohort study of 66 million people. Lancet Reg Health Eur. 2021 Sep;8:100158. doi: 10.1016/j.lanepe.2021.100158.

19. Sharifi Y, Payab M, Mohammadi-Vajari E et al.. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: a review. J Diabetes Metab Disord. 2021 Jun 26;20(2):1743–1765. doi: 10.1007/s40200-021-00822-2. PMID: 34222055; PMCID: PMC 8233632.

20. Zagidullin NS, Motloch LJ, Musin TI et al.. J-waves in acute COVID-19: A nov el disease characteristic and predictor of mortality? PLoS One. 2021 Oct 14;16(10): e0257982. doi: 10.1371/journal.pone.0257982. PMID: 34648510; PMCID: PMC 8516278

21. Ebashi S., Kodama A. A new protein factor promoting aggregation of tropomyosin// J. Biochem.– 1965.– Jul; 58(1).– Р. 107–108

22. Greaser M. L., Gergely J. Purification and properties of the components from troponin// J. Biol. Chem.– 1973.– Mar 25;248(6).– Р. 2125–2133

23. Thygesen K., Alpert J. S., Jaffe A. S. et al. ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction// Eur. Heart J.– 2012.– Vol. 33.– Р. 2551–2567

24. McEvoy J.W., Chen Y., Ndumele C. E. et.al. Six-year change in high-sensitivity cardiac troponin t and risk of subsequent coronary heart disease, heart failure, and death// JAMA Cardiol.– 2016.– Aug 1;1(5) – Р. 519–528

25. Masson S., Anand I., Favero C. et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials// Circulation.– 2012.– Jan 17;125(2) – Р. 280–288

26. Wibowo A, Pranata R, Akbar MR, Purnomowati A, Martha JW. Prognostic performance of troponin in COVID-19: A diagnostic meta-analysis and meta-regression. Int J Infect Dis. 2021 Apr;105:312–318. doi: 10.1016/j.ijid.2021.02.113.

27. Ni W, Yang X, Liu J et al.. Acute Myocardial Injury at Hospital Admission Is Associated With All-Cause Mortality in COVID-19. J Am Coll Cardiol. 2020 Jul 7;76(1):124–125. doi: 10.1016/j.jacc.2020.05.007.

28. Gaze DC. Clinical utility of cardiac troponin measurement in COVID-19 infection. Ann Clin Biochem. 2020 May;57(3):202–205. doi: 10.1177/0004563220921888.

29. Zhou F, Yu T, Du R et al.. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054–1062. doi: 10.1016/S0140–6736(20)30566-3.

30. Santoso A, Pranata R, Wibowo A et al. . Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. Am J Emerg Med. 2021 Jun;44:352–357. doi: 10.1016/j.ajem.2020.04.052.

31. Lippi G., Lavie C. J., Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog. Cardiovasc. Dis. 2020;63(3):390–391

32. Zaninotto M, Mion MM, Padoan A, Babuin L, Plebani M. Cardiac troponin I in SARS-CoV-2-patients: The additional prognostic value of serial monitoring. Clin Chim Acta. 2020 Dec;511:75–80. doi: 10.1016/j.cca.2020.09.036.

33. Kini A, Cao D, Nardin M et al.. Types of myocardial injury and mid-term outcomes in patients with COVID-19. Eur Heart J Qual Care Clin Outcomes. 2021 Sep 16;7(5):438–446. doi: 10.1093/ehjqcco/qcab053. PMID: 34458912

34. Laura De Michieli, Allan S Jaffe, Yader Sandoval. Use and Prognostic Implications of Cardiac Troponin in COVID-19. Cardiol Clin. 2022 Aug;40(3):287–300. doi: 10.1016/j.ccl.2022.03.005

35. Клиническая лабораторная диагностика: в 2 т. Т. 1 / под ред. Профессора В. В. Долгова.– М.: ООО «Лабдиаг», 2017.– 464 с.

36. Zagidullin N, Motloch LJ, Gareeva D et al.. Combining Novel Biomarkers for Risk Stratification of Two-Year Cardiovascular Mortality in Patients with ST-Elevation Myocardial Infarction. J Clin Med. 2020 Feb 18;9(2):550. doi: 10.3390/jcm9020550. PMID: 32085400; PMCID: PMC 7073894

37. Galvani M, Ferrini D, Ottani F. Natriuretic peptides for risk stratification of patients with acute coronary syndromes. Eur J Heart Fail. 2004 Mar 15;6(3):327–33. doi: 10.1016/j.ejheart.2004.01.006. PMID: 14987584

38. McDonagh TA, Metra M, Adamo M et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 Sep 21;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368.

39. Fu S, Ping P, Wang F, Luo L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng. 2018 Jan 12;12:2. doi: 10.1186/s13036-017-0093-0. PMID: 29344085; PMCID: PMC 5766980

40. Lippi G, Sanchis-Gomar F, Favaloro EJ, Lavie CJ, Henry BM. Coronavirus Disease 2019-Associated Coagulopathy. Mayo Clin Proc. 2021 Jan;96(1):203–217. doi: 10.1016/j.mayocp.2020.10.031. Epub 2020 Oct 31. PMID: 33413819; PMCID: PMC 7604017

41. Zeng JH, Wu WB, Qu JX et al. . Cardiac manifestations of COVID-19 in Shenzhen, China. Infection. 2020 Dec;48(6):861–870. doi: 10.1007/s15010–020–01473-w. Epub 2020 Jul 28. PMID: 32725595; PMCID: PMC 7386384

42. Jain SS, Liu Q, Raikhelkar J et al. . Indications for and Findings on Transthoracic Echocardiography in COVID-19. J Am Soc Echocardiogr. 2020 Oct;33(10):1278– 1284. doi: 10.1016/j.echo.2020.06.009.

43. Guo T, Fan Y, Chen M et al.. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 Jul 1;5(7):811–818. doi: 10.1001/jamacardio.2020.1017.

44. Caro-Codón J, Rey JR, Buño A et al. . Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur J Heart Fail. 2021 Mar;23(3):456–464. doi: 10.1002/ejhf.2095.

45. Lim W, Le Gal G, Bates SM et al.. American Society of Hematology 2018 guidelines for management of venous thromboembolism: diagnosis of venous thromboembolism. Blood Adv. 2018 Nov 27;2(22):3226–3256. doi: 10.1182/bloodadvances.2018024828.

46. Zhang S, Liu Y, Wang X et al.. SARS-CoV-2 binds platelet ACE 2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020 Sep 4;13(1):120. doi: 10.1186/s13045-020-00954-7.

47. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020 Jun 25;58(7):1131–1134. doi: 10.1515/cclm-2020–0198. PMID: 32119647

48. Soni M, Gopalakrishnan R, Vaishya R, Prabu P. D-dimer level is a useful predictor for mortality in patients with COVID-19: Analysis of 483 cases. Diabetes Metab Syndr. 2020 Nov-Dec;14(6):2245–2249. doi: 10.1016/j.dsx.2020.11.007.

49. Zhou F, Yu T, Du R et al. . Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054–1062. doi: 10.1016/S0140–6736 (20) 30566-3.

50. Zhang, L, Yan, X, Fan, Q. et al.. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemostasis 2020;18:1324–9. https://doi.org/10.1111/jth.14859

51. Poudel, A, Poudel, Y, Adhikari, A, Aryal, BB, Dangol, D, Bajracharya, T, et al. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. PLoS One 2021;16: e0256744. https://doi.org/10.1371/journal.pone.0256744

52. Jankowich M, Choudhary G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc Med. 2020 Jan;30(1):1–8. doi: 10.1016/j.tcm.2019.01.007.

53. Chester A. H., Yacoub M. H. The role of endothelin-1 in pulmonary arterial hypertension. Glob Cardiol Sci Pract. 2014;2014(2):62–78. Katherine M. R. M. Banecki and Kim A. Dora Endothelin-1 in Health and Disease. Int J Mol Sci. 2023 Jul; 24(14): 11295. doi: 10.3390/ijms241411295

54. Abraham GR, Kuc RE, Althage M et al. Endothelin-1 is increased in the plasma of patients hospitalised with Covid-19. J Mol Cell Cardiol. 2022 Jun;167:92–96. doi: 10.1016/j.yjmcc.2022.03.007.

55. Bermejo-Martin J.F., García-Mateo N., Motos A. et al. Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: A multicentre, prospective, cohort study. Lancet Microbe. 2023;4: E 431–E 441. doi: 10.1016/S2666–5247(23)00041-1

56. Bolignano D, Cabassi A, Fiaccadori E. et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med. 2014 Oct;52(10):1447–56. doi: 10.1515/cclm-2014–0379. PMID: 24940718

57. Pervez MO, Winther JA, Brynildsen J. et al. Prognostic and diagnostic significance of mid-regional pro-atrial natriuretic peptide in acute exacerbation of chronic obstructive pulmonary disease and acute heart failure: data from the ACE 2 Study. Biomarkers. 2018 Nov;23(7):654–663. doi: 10.1080/1354750X.2018.1474258

58. Hellenkamp K, Schwung J, Rossmann H, Kaeberich A, Wachter R, Hasenfuß G, Konstantinides S, Lankeit M. Risk stratification of normotensive pulmonary embolism: prognostic impact of copeptin. Eur Respir J. 2015 Dec;46(6):1701–10. doi: 10.1183/13993003.00857–2015.

59. Baranowska B, Kochanowski J. Copeptin – a new diagnostic and prognostic biomarker in neurological and cardiovascular diseases. Neuro Endocrinol Lett. 2019 Dec;40(5):207–214. PMID: 32112544

60. Lipinski MJ, Escárcega RO, D’Ascenzo F et al.. A systematic review and collaborative meta-analysis to determine the incremental value of copeptin for rapid rule-out of acute myocardial infarction. Am J Cardiol. 2014 May 1;113(9):1581–91. doi: 10.1016/j.amjcard.2014.01.436

61. Жукова АВ, Арабидзе ГГ. Копептин как фактор риска краткосрочной летальности и развития повторных острых коронарных событий у пациентов с ОКС без подъема сегмента ST. Атеросклероз и дислипидемии. 2019; 3(36): 5–11. DOI: 10.34687/2219–8202.JAD.2019.03.0001

62. Kaufmann CC, Ahmed A, Kassem M, et al. Improvement of outcome prediction of hospitalized patients with COVID-19 by a dual marker strategy using high-sensitive cardiac troponin I and copeptin. Clin Res Cardiol. 2022 Mar;111(3):343–354. doi: 10.1007/s00392-021-01970-4. Epub 2021 Nov 15. PMID: 34782921; PMCID: PMC 8592075

63. Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018 Sep;59:17–24. doi: 10.1016/j.clinbiochem.2018.07.003. Epub 2018 Jul 10. PMID: 30003880

64. Soejima H, Irie A, Fukunaga T, et al. Osteopontin expression of circulating T cells and plasma osteopontin levels are increased in relation to severity of heart failure. Circ J. 2007 Dec;71(12):1879–84. doi: 10.1253/circj.71.1879. PMID: 18037740

65. Hayek SS, Roderburg C, Blakely P, et al. Circulating Osteopontin Levels and Outcomes in Patients Hospitalized for COVID-19. J Clin Med. 2021 Aug 30;10(17):3907. doi: 10.3390/jcm10173907. PMID: 34501358; PMCID: PMC 8432103

66. Varım C, Demirci T, Cengiz H et al. Relationship between serum osteopontin levels and the severity of COVID-19 infection. Wien Klin Wochenschr. 2021 Apr;133(7–8):298–302. doi: 10.1007/s00508-020-01789-5.

67. Villacorta H, Maisel AS. Soluble ST2 Testing: A Promising Biomarker in the Management of Heart Failure. Arq Bras Cardiol. 2016 Feb;106(2):145–52. doi: 10.5935/abc.20150151.

68. Hur M, Kim H, Kim HJ, et al. Soluble ST2 has a prognostic role in patients with suspected sepsis. Ann Lab Med. 2015 Nov;35(6):570–7. doi: 10.3343/alm.2015.35.6.570. PMID: 26354344; PMCID: PMC 4579100

69. Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary artery disease: Clinical biomarkers and treatment guidance. Front Cardiovasc Med. 2022 Sep 26;9:924461. doi: 10.3389/fcvm.2022.924461. PMID: 36225958; PMCID: PMC 9548599

70. Zeng Z, Hong XY, Li Y, Chen W, Ye G, Li Y, Luo Y. Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark Med. 2020 Dec;14(17):1619–1629. doi: 10.2217/bmm-2020–0410. PMID: 33336592

71. Sánchez-Marteles M, Rubio-Gracia J, Peña-Fresneda N, et al. Early Measurement of Blood sST2 Is a Good Predictor of Death and Poor Outcomes in Patients Admitted for COVID-19 Infection. J Clin Med. 2021 Aug 11;10(16):3534. doi: 10.3390/jcm10163534.

72. Rubio-Gracia, J.; Sánchez-Marteles, M.; Garcés-Horna, V.et al. Multiple Approaches at Admission Based on Lung Ultrasound and Biomarkers Improves Risk Identification in COVID-19 Patients. J. Clin. Med. 2021, 10, 5478. https://doi.org/10.3390/jcm10235478

73. Díaz-Alvarez L, Ortega E. The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm. 2017;2017:9247574. doi: 10.1155/2017/9247574.

74. Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in Cardiovascular Diseases. Int J Mol Sci. 2020 Dec 3;21(23):9232. doi: 10.3390/ijms21239232. PMID: 33287402; PMCID: PMC 7731136

75. Chow SL, Maisel AS, Anand I, et al. American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology; Council on Basic Cardiovascular Sciences; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Epidemiology and Prevention; Council on Functional Genomics and Translational Biology; and Council on Quality of Care and Outcomes Research. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2017 May 30;135(22): e1054-e1091. doi: 10.1161/CIR.0000000000000490. Epub 2017 Apr 26. Erratum in: Circulation. 2017 Nov 7;136(19): e345. PMID: 28446515

76. Asleh R, Enriquez-Sarano M, Jaffe AS, Manemann SM, Weston SA, Jiang R, Roger VL. Galectin-3 Levels and Outcomes After Myocardial Infarction: A Population-Based Study. J Am Coll Cardiol. 2019 May 14;73(18):2286–2295. doi: 10.1016/j.jacc.2019.02.046. PMID: 31072572; PMCID: PMC 6512841

77. Portacci A, Diaferia F, Santomasi C, Dragonieri S, Boniello E, Di Serio F, Carpagnano GE. Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir Med. 2021 Oct;187:106556. doi: 10.1016/j.rmed.2021.106556.

78. Kazancioglu S, Yilmaz FM, Bastug A et al.. Assessment of Galectin-1, Galectin-3, and Prostaglandin E 2 Levels in Patients with COVID-19. Jpn J Infect Dis. 2021 Nov 22;74(6):530–536. doi: 10.7883/yoken.JJID.2021.020.

79. Kuśnierz-Cabala B, Maziarz B, Dumnicka P, et al.. Diagnostic Significance of Serum Galectin-3 in Hospitalized Patients with COVID-19-A Preliminary Study. Biomolecules. 2021 Aug 1;11(8):1136. doi: 10.3390/biom11081136. PMID: 34439802; PMCID: PMC 8393726


Рецензия

Для цитирования:


Тазина С.Я., Антипова И.Ю., Федорова Т.А., Ройтман А.П., Бугров А.В. Ключевые аспекты лабораторной диагностики поражения сердечно‑сосудистой системы при COVID‑19. Медицинский алфавит. 2024;(20):26-32. https://doi.org/10.33667/2078-5631-2024-20-26-32

For citation:


Tazina S.I., Antipova I.Y., Fedorova T.A., Roytman A.P., Bugrov A.V. Key role of laboratory diagnostics of cardiovascular system injury in COVID‑19. Medical alphabet. 2024;(20):26-32. (In Russ.) https://doi.org/10.33667/2078-5631-2024-20-26-32

Просмотров: 113


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)