

The role of peroxis proliferator-activated receptors in metabolic diseases
https://doi.org/10.33667/2078-5631-2024-16-19-24
Abstract
Аim: to analyze and summarize literature data on the effect of peroxisome proliferator-activated receptors (PPARs) on cardiometabolic parameters in chronic non-infectious diseases, including type 2 diabetes mellitus.
Materials and methods: a comprehensive search was conducted in electronic databases, including PubMed/Medline, Web of Science, Scopus, on the role of peroxisome proliferator-activated receptors (PPAR) on cardiometabolic parameters in type 2 diabetes mellitus.
Results: the relevance of research into the identification of structural determinants responsible for the binding and activation of PPAR is shown. Their contributions are particularly relevant in the characterization and optimization of new PPAR modulators of different origins, taking into account their activity, selectivity and safety profiles. Identification of known PPAR agonists found in foods makes a potential contribution to the comprehensive treatment of patients with type 2 diabetes. PPAR receptors play a key role in lipid metabolism and glucose homeostasis, as well as in the prevention and treatment of metabolic diseases.
Conclusion: further research on the role of PPAR agonists of various isoforms opens up new perspectives with the use of dietary and drug therapies in a number of metabolic diseases.
Keywords
About the Authors
R. I. AlekseevaRussian Federation
Alekseeva Ravilya I., DM Sci (habil.), researcher at Dept of Metabolic Diseases and Diet Therapy
Moscow
Kh. Kh. Sharafetdinov
Russian Federation
Sharafetdinov Khayder Kh., PhD Med, head of Dept of Metabolic Diseases and Diet Therapy, professor at Dept of Dietetics and Nutrition, professor at Dept of Food Hygiene and Toxicology
Moscow
O. A. Plotnikova
Russian Federation
Plotnikova Oksana A., PhD Med, senior researcher at Dept of Metabolic Diseases and Diet Therapy
Moscow
V. V. Pilipenko
Russian Federation
Pilipenko Victoria V., PhD Med, research associate at Dept of Metabolic Diseases and Diet Therapy
Moscow
E. Yu. Sorokinа
Russian Federation
Sorokina Elena Yu., PhD Med, leading research associate at Laboratory of Demography and Epidemiology of Nutrition
Moscow
References
1. Drapkina O. M., Kontsevaya A. V., Kalinina A. M., Avdeev S. N., Agaltsov M. V., Alexandrova L. M. et al. Prevention of chronic non-communicable diseases in the Russian Federation. National guidelines. Cardiovascular Therapy and Prevention. 2022; 21 (4): 3235. (In Russ.). DOI: 10.15829/1728–8800–2022–3235. EDN DNBVAT.
2. Clinical recommendations. Algorithms of specialized medical care for patients with diabetes mellitus. Ed. I. I. Dedova, M. V. Shestakova, A. Yu. Mayorova. – 10th edition (updated). M., 2021. (In Russ.). DOI: 10:14341/DM12802
3. Valeeva F. V., Medvedeva M. S., Khasanova K. B., Valeeva E. V., Kiseleva T. A., Egorova E. S., Pickering C., Ahmetov I. I. Association of gene polymorphisms with body weight changes in prediabetic patients. Mol Biol Rep. 2022 Jun; 49 (6): 4217–4224. DOI: 10.1007/s11033-022-07254-y
4. Bougarne N., Weyers B., Desmet S. J., Deckers J., Ray D. W., Staels B., De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev. 2018 Oct 1; 39 (5): 760–802. DOI: 10.1210/er.2018-00064
5. Lin Y., Wang Y., Li P. F.PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne). 2022 Dec 16; 13: 1074911. DOI: 10.3389/fendo.2022.1074911
6. Han L., Shen W. J., Bittner S., Kraemer F. B., Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α.Future Cardiol. 2017 May; 13 (3): 259–278. DOI: 10.2217/fca‑2016-0059
7. Devan A. R., Nair B., Kumar A. R., Nath L. R. An insight into the role of telmisartan as PPAR-γ/α dual activator in the management of nonalcoholic fatty liver disease. Biotechnol Appl Biochem. 2022 Apr; 69 (2): 461–468. DOI: 10.1002/bab.2123
8. Lee D., Tomita Y., Negishi K., Kurihara T. Therapeutic roles of PPARα activation in ocular ischemic diseases. Histol Histopathol. 2023 Apr; 38 (4): 391–401. DOI: 10.14670/HH‑18-542
9. Durai P., Beeraka N. M., Ramachandrappa H. V.P., Krishnan P., Gudur P., Raghavendra N. M., Ravanappa P. K.B.Advances in PPARs Molecular Dynamics and Glitazones as a Repurposing Therapeutic Strategy through Mitochondrial Redox Dynamics against Neurodegeneration. Curr Neuropharmacol. 2022; 20 (5): 893–915. DOI: 10.2174/1570159X19666211109141330
10. Matrisciano F., Pinna G. PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior. Int. J. Mol. Sci. 2021 Oct 1; 22 (19): 10678. DOI: 10.3390/ijms221910678
11. D’Aniello E., Amodeo P., Vitale R. M. Marine Natural and Nature-Inspired Compounds Targeting Peroxisome Proliferator Activated Receptors (PPARs). Mar Drugs. 2023 Jan 26; 21 (2): 89. DOI: 10.3390/md21020089
12. Li S., Yang B., Du Y., Lin Y., Liu J., Huang S., Zhang A., Jia Z., Zhang Y. Targeting PPARα for the Treatment and Understanding of Cardiovascular Diseases. Cell Physiol Biochem. 2018; 51 (6): 2760–2775. DOI: 10.1159/000495969
13. Yang H., Xiao L., Wang N. J. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions. Diabetes. 2017 Apr; 9 (4): 341–352. DOI: 10.1111/1753-0407.12506
14. Bujo S., Toko H., Ito K., Koyama S., Ishizuka M., Umei M., Yanagisawa-Murakami H., Guo J., Zhai B., Zhao C., Kishikawa R., Takeda N., Tsushima K., Ikeda Y., Takimoto E., Morita H., Harada M., Komuro I. Low-carbohydrate diets containing plant-derived fat but not animal-derived fat ameliorate heart failure. Sci Rep. 2023 Mar 9; 13 (1): 3987. DOI: 10.1038/s41598-023-30821-7
15. Li S., He C., Nie H., Pang Q., Wang R., Zeng Z., Song Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2022 Jun 29; 13: 919087. DOI: 10.3389/fendo.2022.919087
16. Castro G. V., Latorre A. F.S., Korndorfer F. P., de Carlos Back L. K., Lofgren S. E. The Impact of Variants in Four Genes: MC 4R, FTO, PPARG and PPARGC 1A in Overweight and Obesity in a Large Sample of the Brazilian Population. Biochem Genet. 2021 Dec; 59 (6): 1666–1679. DOI: 10.1007/s10528-021-10079-2
17. Pacilli A., Prudente S., Copetti M., Fontana A., Mercuri L., Bacci S., Marucci A., Alberico F., Viti R., Palena A., Lamacchia O., Cignarelli M., De Cosmo S., Trischitta V. The PPARγ2 P12A polymorphism is not associated with all-cause mortality in patients with type 2 diabetes mellitus. Endocrine. 2016 Oct; 54 (1): 38–46. DOI: 10.1007/s12020-016-0906-9
18. Saremi L, Lotfipanah S, Feizy F, Ghaffari ME, Babaniamansour S, Saltanatpour Z. Аssociation between PRO12ALa polymorphism of PPARγ2 gene and coronary artery disease in iranian population with type two diabetes mellitus. Acta Endocrinol (Buchar). 2022 Apr-Jun; 18 (2): 139–144. DOI: 10.4183/aeb.2022.139
19. Cheng F., Si X. M., Yang G. L., Zhou L. Relationship between PPAR-γ gene polymorphisms and ischemic stroke risk: A meta-analysis. Brain Behav. 2021 Dec; 11 (12): e2434. DOI: 10.1002/brb3.2434
20. Rodrigues A. P.D.S., Rosa L. P.S., da Silva H. D., Silveira-Lacerda EP, Silveira EA. The Single Nucleotide Polymorphism PPARG2 Pro12Ala Affects Body Mass Index, Fat Mass, and Blood Pressure in Severely Obese Patients. J Obes. 2018 Dec 12; 2018:2743081. DOI: 10.1155/2018/2743081
21. Maciejewska-Skrendo A., Massidda M., Tocco F., Leźnicka K. The Influence of the Differentiation of Genes Encoding Peroxisome Proliferator-Activated Receptors and Their Coactivators on Nutrient and Energy Metabolism. Nutrients. 2022 Dec 18; 14 (24): 5378. DOI: 10.3390/nu14245378. PMID: 36558537; PMCID: PMC 9782515.
22. Vaiserman A., Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics.Ageing Res Rev. 2019 Nov; 55: 100957. DOI: 10.1016/j.arr.2019.100957
23. Sharafetdinov Kh. Kh., Plotnikova O. A., Alekseeva R. I., Pilipenko V. V., Alekseev V. A. Evidence-based nutritional patterns for type 2 diabetes prevention and treatment. Vopr. dietol. (Nutrition). 2022; 12(4): 11–22. (In Russ.). DOI: DOI: 10.20953/2224-5448-2022-4-11-22
24. Pogozheva A. V., Tarmaeva I. Yu. Educational programs: an effective mechanism for preventing and treating obesity. (Nutrition). 2022; 12 (4): 43–49. (In Russ.). DOI: 10.20953/2224-5448-2022-4-43-49
25. Ling C., Bacos K., Rönn T. Epigenetics of type 2 diabetes mellitus and weight change – a tool for precision medicine? Nat Rev Endocrinol. 2022 Jul; 18 (7): 433–448. DOI: 10.1038/s41574-022-00671-w
26. Gapparova K. M., Chekhonina Yu. G. Role of specialized food products in dietary treatment for obesity. Vopr. dietol. (Nutrition). 2023; 13 (3): 50–54. (In Russ.). DOI: 10.20953/2224-5448-2023-3-50-54
27. Pilipenko V. I., Isakov V. A. Methods for dietary pattern analysis. Vopr. dietol. (Nutrition). 2023; 13 (3): 25–31. (In Russ.). DOI: 10.20953/2224-5448-2023-3-25-31
Review
For citations:
Alekseeva R.I., Sharafetdinov Kh.Kh., Plotnikova O.A., Pilipenko V.V., Sorokinа E.Yu. The role of peroxis proliferator-activated receptors in metabolic diseases. Medical alphabet. 2024;(16):19-24. (In Russ.) https://doi.org/10.33667/2078-5631-2024-16-19-24