Preview

Medical alphabet

Advanced search

5P Medicine: molecular diagnostic technologies of mobile healthcare

Abstract

The review considers mobile health technologies (mHealth) - a new, rapidly developing field of medicine. Extremely promising are hybrid devices based on microfluidic technologies, mobile devices for monitoring diabetes mellitus, the use of mobile phones in immunoassay, microscopy in the diagnosis of cancer. Amplification technologies of mobile health care are used, in particular, in the diagnosis of infectious and parasitic diseases. All conditions for the emergence of mass open online medicine (IOM) have been created.

About the Authors

S. N. Shcherbo
ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Russian Federation


D. S. Shcherbo
ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Russian Federation


M. Yu. Kralin
ФГАОУ ВО «Российский университет дружбы народов»
Russian Federation


References

1. Щербо С. Н., Щербо Д. С. Медицина 5П: Прецизионная медицина. // Медицинский алфавит. Современная лаборатория.- 2015.- 4.- С. 5-10.

2. Yang Ke., Perefz-Soroka H., Liu Y et al. Novel developments in mobile sensing based on the integration microfluidic devices and smartphones. // Lab on a chip.- 2016.- DOI: 10.1039/c51c01524c.

3. Hu J., Wang S., Wang L. et al. Advances in paper-based point-of-care diagnostics. / / Biosens. Bioelectron.-2014.-54.-P. 585-597.

4. Martinez A. W., Phillips S. T., Carrilho E. et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. // Anal. Chem. - 2008.- 80.- P. 3699-3707.

5. Lopez-Ruiz N., Curto V. F., Erenas M. M. et al. Annal. Chem.- 2014. - 86.- P. 9554-9562.

6. Lu Y., Shi W., Qin J. et al. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. // Electrophoresis. - 2009. - 30.- P. 579-582.

7. Berthier E., Young E. W.K., Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. // Lab Chip.- 2012.-12.- P. 1224-1237.

8. Wu J. D., Wu X. Lin F. Recent developments in microfluidics-based chemotaxis studies. Engineers are from PDMS-land, Biologists are from Polystyrenia. // Lab Chip.-2013.-13.- P. 2484-2499.

9. Martinez A. W., Phillips S. T., Carrilho E. et al. Simple telemedicine for developing regions: cam era phones and paper-based microfluidic devices for real-time, off-site diagnosis. // Anal. Chem. - 2008. - 80. - P. 3699-3707.

10. Oncescu V., Mancuso M., Erickson D. Cholesterol testing on a smartphone. // Lab Chip. - 2014.- 14.- P. 759-763.

11. Roda A., Michelini E., Cevenini L. et al. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal. Chem.- 2014.- 86.- P. 7299-7304.

12. Lee S., Oncescu V., Mancuso M. et al. A smartphone platform for the quantification of vitamin D levels. Lab Chip.-2014.- 14.-8.- P. 1437-1442.

13. Lee S., O Dell D., Hohenstein J. et al. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B 12 concentrations. // Sci. Rep.- 2016.- 6: 28237. doi: 10.1038/srep28237.

14. Lu Y., Shi W., Qin J. et al. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. // Electrophoresis.- 2009.-30.- P. 579-582.

15. Lopez-Ruiz N., Curto V.F., Erenas M. M. et al. Annal. Chem. - 2014.- 86.- P. 9554-9562.

16. Balsam J., Bruck H. A., Rasooly A. Smartphone-based fluorescence detector for mHealth. // Methods Mol. Biol.- 2015.- 1256.- P. 231-245.

17. Balsam J., Bruck H. A., Rasooly A. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics. // Methods Mol. Biol.- 2015.- 1256.- P. 247-258.

18. Rasooly A., Herold K.E. Mobile Health Technologies. Methods and Protocols. New York: Springer, 2015.

19. Coshun A. F., Wong J., Khodadadi D. et al. A personalized food allergen testing platform on a cellphone. // Lab. Chip.-2013.- 13.-

20. - P. 636-640.

21. Olasagasti F., de Gordoa J. C. Miniaturized technology for protein and nucleic acid point-of-care testing. // Transl. Res.-2012.- 160.- 5.- P. 332-345.

22. Rajendran V., Bakthavathsalam P., Ali B. J. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. // Microchim- Acta.-2014.- 181.- 15-16.- P. 1815-1821.

23. McGeough C. M., O Driscoll S. Camera phone-based quantitative analysis of C-reactive protain ELISE. // IEEE Trans Biomed Corc Sys. doi: 10.1109/TBCAS.2012.2234122.

24. Lu Y., Shi S., Qin J. et al. Low cost portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. // Electrophoresis.- 2009.- 30.- P. 579-582.

25. Coshkun A. F., Wong J., Khodadadi D. et al. A personalized food allergen testing platform on a cellphone. // Lab Chip. - 2013.- 13.- P. 636-640.

26. Zhu H., Sikora U., Ozcan A. Quantum dot enabled detection of Escherichia coli using a cellphone. // Analyst. - 2012.- 137: 2541-2544.

27. Kalorama Information Report. The Wold Market Immunoassays. United States, New York, 2013.

28. Laksanasopin T., Guo T. W., Nayak S. et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci. Transl. Med. - 2015.- 7. - 273 re1.

29. Mudanayali O., Dimitrov S., Sikora U. et al. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab. Chip.- 2012.- 12.- P. 2678-2686.

30. You D. J., Park T. S., Yoon J. Y. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Bioscens. Bioelectron.- 2013. - 40.- P. 180-185.

31. Miller G. How to make a microscope out of paper in 10 minutes. / / Wired, March 7,2014.

32. Fronczek C. F., Park T.S., Harshman D. K. et al. RSC Adv. - 2014.- 4.- P. 11103-11110.

33. Pathania D., Im H., Kilcoyne A. et al. Holographic Assessment of Lymphoma Tissue (HALT) for Global Oncology Field Applications. // Theranostics. - 2016.-6.- 10.- 1603-1610.

34. Kuhnemand M., Wei Q., DaraiE. et al. Target DNA sequencing and in situ mutation analysis using mobile phone microscopy. // Nature Comm. - 2017. - 8.- 13913.

35. Savage N. Bioinformatics: Big data versus the big C. // Nature.- 2014.- 509.- P. S 66-S 67.

36. Stedtfeld R. D., Tourlousse D. M., Seyrig G. et al. Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip. - 2012.- 12.- P. 1454-1462.

37. Angus S. V., Cho S., Harshman D. K. et al. A portable, shock-proof, surface-heated droplet PCR system for Escherichia coli detection. Biosens. Bioelectron.-2015. - 74.-P. 360-368.

38. Maltezos G., Johnston M., Taganov K. et al. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle. Appl. Phys. Lett. - 2010.- 97. - 264101.

39. Rodriguez-Manzano J., Karymov M. A., Begolo S. et al. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones. // ACS Nano.- 2016.-10.- 3.- P. 3102-3113.

40. Scherr T. F., Gupta S., Wright D. W. et al. Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting. // Sci. Rep.-2016.-6:28645. doi: 10.1038/srep28645.

41. Priye A., Wong S., Bi Y. et al. Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Based Diagnostics for Mobile Health Care. // Anal. Chem. - 2016.- 88.- 9.- P. 4651-4660.

42. Wesolowski A., Eagle N., Tatem A. J. et al. Quantifying the impact of human mobility on malaria. // Science. - 2012. - 267. - P. 267-270.

43. Lukianova-Hleb E.Y., Camplell K. M., Constantinou P. E., et al. Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria. // PNAS Early Edition, December 30, 2013.

44. Lillehoj P. B., Huang M. C., Truong N. et al. Rapid electrochemical detection on a mobile phone. Lab Chip.- 2013.- 13.- P. 2950-2955.

45. Stemple C. C., Angus S. V., Park T. S. et al. Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood. J. Lab. Autom. - 2014.- 19.- P. 35-41.

46. Breslauer D. N., Maamari R. N., Switz N. A.et al. Mobile Phone Based Clinical Microscopy for Global Health Application. // PLoS One. - 2009. - 4.- 7.- e6320.

47. Lee S. A., Yang S. A smartphone-based chipscale microscope using ambient illumination. // Lab Chip. - 2014.- 14.- P. 3056-3063.

48. DAmbrosio M.C., Bakalar M., Bennuru S. et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. // Sci. Transl. Med.- 2015.-7.- P. 286 re4.

49. Sackmann E. K., Fulton A. L., Beebe D. J. The Present and Future Role of Microfluidics in Biomedical Research. // Nature.- 2014.- 507.- P. 181-189.

50. Farrell M. Blood tests in minutes, not days or weeks. // Boston Globe, September29,2013.

51. Yetisena A.K., Martinez-Hurtado J.L., Carcio-Melendrez A. et al. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. // Sensors and actuators B: chemical.- 2014.- 196.- P. 156-160.

52. Theron G. et al. Feasibility, accuracy and clinical effect of point-of-care Xpert MTB/ RIF Testing for tuberculosis in primary-care settings in Africa: a multicentre, randomized, controlled trial. // The Lacet.-2014.-383.- P. 424-435.

53. Berrouiduet S., Baca-Garcia E., Brandt S. et al. Fundamentals for Future Mobile-Health (mHealth): A Systematic Review of Mobile Phone and Web-Based Text Messaging in Mental Health. // J. Med. Internet Res. - 2016.- 18.- 6.- e. 135.


Review

For citations:


Shcherbo S.N., Shcherbo D.S., Kralin M.Yu. 5P Medicine: molecular diagnostic technologies of mobile healthcare. Medical alphabet. 2017;4(28):5-11. (In Russ.)

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)