Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Possibilities of flow cytometry, PCR and sequencing in early diagnosis of atherosclerosis activity

https://doi.org/10.33667/2078-5631-2024-4-7-11

Abstract

Atherosclerosis (AS) is a multifactorial disease leading to increased cardiovascular risks. Currently, the diagnosis of AS is limited to imaging methods of atherosclerotic plaque assessment and laboratory methods of dyslipidemia diagnosis, which do not provide an understanding of the activity of processes occurring in the atherosclerotic plaque. The aim of this review: to generate potential markers of AS activity. Macrophages play an important role in atherogenesis. Macrophages have several phenotypes, determining which can be concluded about the activity of the inflammatory process in the plaque. Genetic markers, such as microRNAs, circular RNAs and factors regulating their expression, play an important role in the development of atherosclerosis. Methods of flow cytometry, PCR and sequencing are promising for studying these markers. Markers of atherogenesis activity are essential in diagnosis, as well as in the choice of personalized treatment of patients.

About the Authors

A. P. Roytman
Russian Medical Academy of Continuous Professional Education
Russian Federation

Roitman Alexander P., DM Sci (habil.), professor at Dept of Clinical Laboratory Diagnostics with a course in Laboratory Immunology

Moscow



N. S. Markina
Russian Medical Academy of Continuous Professional Education
Russian Federation

Markina Nadezhda S., resident of Dept of Clinical Laboratory Diagnostics with a course in laboratory immunology

Moscow



V. V. Dolgov
Russian Medical Academy of Continuous Professional Education
Russian Federation

Dolgov Vladimir V., Doctor of Medical Sciences, professor at Dept of Clinical Laboratory Diagnostics with a course in Laboratory Immunology

Moscow



References

1. Kuzmichev D. E., Skrebov R. V. Clinic, morphology of aortic atherosclerosis with rupture. Healthcare of Ugra: experience and innovations. 2018; (4): 66–8. https://cyberleninka.ru/article/n/klinika-morfologiya-ateroskleroza-aorty-s-razryvom

2. Kuznetsov S. N., Mushkambarov N. N. Histology, cytologyandembryology. MIA (Medical Information Agency); 2016: 640.

3. Haverich A., Boyle E. C. Atherosclerosis Pathogenesis and Microvascular Dysfunction. Cham: Springer Nature; 2019. 130. https://doi.org/10.1007/978–3–030–20245–3

4. Yuryeva E. A., Sukhorukov V. S., Vozdvizhenskaya E. S., Novikova N. N. Atherosclerosis: hypothesesandtheories. Russian Bulletin of Perinatology and Pediatrics. 2014; 59(3): 6–16. https://www.elibrary.ru/item.asp?id=21649590

5. Orishchenko A. K., Gavrichenko E. P., Raikova K. A. Modern theories of the etiology and pathogenesis of atherosclerosis. Bulletin of Medical Internet Conferences. 2021; 11(3): 57–57. ID: 2021–03–6-T-19461

6. Sleptsov A. A. Cellular heterogeneity and clonal hematopoiesis of immune system cells in atherosclerosis. Russian Journal of Cardiology. 2022; 27(10): 5228. https://doi.org/10.15829/1560–4071–2022–5228

7. Xu J., Lu X., Shi G. P. Vasa Vasorum in Atherosclerosis and Clinical Significance. Int J Mol Sci. 2015;16(5):11574–608. https://doi.org/10.3390/ijms160511574

8. Rademakers T., Douma K., Hackeng T. M., Post M. J., Sluimer J. C., Daemen идр. Plaque-Associated Vasa Vasorum in Aged Apolipoprotein E–Deficient Mice Exhibit Proatherogenic Functional Features In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(2):249–56. https://doi.org/10.1161/ATVBAHA.112.300087

9. Evdokimenko A. N., Kulichenkova K. N., Gulevskaya T. S., Tanashyan M. M. Features of the regulation of angiogenesis in atherosclerotic plaques of the carotid sinus at the late stages of atherosclerosis development. Russian Physiological Journal named after I. M. Sechenov. 2022; 108(5): 649–66. https://doi.org/10.31857/S0869813922050041

10. Pogosova N. V., YuferevaYu. M., Kachanova N. P., Metelskaya V. A., Koltunov I. E., Voronina V. P., etal. Development of an algorithm for diagnosing preclinical atherosclerosis in high-risk patients development of cardiovascular diseases. Cardiology. 2020; 60(2): 75–82. https://doi.org/10.18087/cardio.2020.2.n964

11. Oleynikov V. E., Salyamova L. I., Khromova A. A., Kupriyanova S. N., Kvasova O. G., Ilyasov I. B. Prediction of coronary atherosclerosis in young patients with coronary heart disease using a non-invasive biomarker. Russian Journal of Cardiology. 2020; 25(12): 3924. https://doi.org/10.15829/1560–4071–2020–3924

12. Kukharchuk V. V., Ezhov M. V., Sergienko I. V., Arabidze G. G., Balakhonova T. V., Gurevich V. S., идр. Eurasian association of cardiology (EAC)/ russian national atherosclerosis society (RNAS, russia) guidelines for the diagnosis and correction of dyslipidemia for the prevention and treatment of atherosclerosis (2020). Evrazijskij kardiologičeskij žurnal. 2020;(2):6–29. https://doi.org/10.38109/2225–1685–2020–2–6–29

13. Abdulsalam M., Feng J. The composition of vulnerable plaque and its effect on arterial waveforms. Journal of the Mechanical Behavior of Biomedical Materials. 2021;119:104491. https://doi.org/10.1016/j.jmbbm.2021.104491

14. Biscetti F., Tinelli G., Rando M. M., Nardella E., Cecchini A. L., Angelini F., идр. Correction to: Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population. CardiovascDiabetol. 2021;20:184. https://doi.org/10.1186/s12933–021–01376–6

15. Pigarevsky P. V., Snegova V. A., Nazarov P. G. Macrophages and their role in the destabilization of atherosclerotic plaque. Cardiology. 2019;59(4):88–91. https://doi.org/10.18087/cardio.2019.4.10254

16. Fadini G. P., Simoni F., Cappellari R., Vitturi N., Galasso S., Kreutzenberg S. V., идр. Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis. 2014;237(2):805–8. https://doi.org/10.1016/j.atherosclerosis.2014.10.106

17. Isali I., McClellan P., R. Wong T., Cingireddi S., Jain M., M. Anderson J., Hijaz A., Akkus O. In Vivo Delivery of M0, M1, and M2 Macrophage Subtypes via Genipin-Cross-Linked Collagen Biotextile. Tissue Engineering. 2022; Part A: 672–684. http://doi.org/10.1089/ten.tea.2021.0203

18. Devaraj S., Jialal I. CRP Polarizes Human Macrophages to a M1 Phenotype and Inhibits Transformation to the M2 Phenotype. Arterioscler Thromb Vasc Biol. 2011;31(6):1397–402. https://doi.org/10.1161/ATVBAHA.111.225508

19. Piekarska A., Pérès M., Toton M., Kulczycka M., Lewandowski K., Vergez F. Identification of circulating regulatory T lymphocytes with membrane markers – a new multiparameter flow cytometry protocol. Folia Histochemica et Cytobiologica. 2021;59(2):75–85. https://doi.org/10.5603/FHC.a2021.0014

20. Emini Veseli B., Perrotta P., De Meyer, Roth L., Van der Donckt C, Martinet W., идр. Animal models of atherosclerosis. European Journal of Pharmacology. 2017;816:3–13. https://doi.org/10.1016/j.ejphar.2017.05.010

21. Skogsberg J., Lundström J., Kovacs A., Nilsson R., Noori P., Maleki S., идр. Transcriptional Profiling Uncovers a Network of Cholesterol-Responsive Atherosclerosis Target Genes. PLoS Genet. 2008;4(3): e1000036. https://doi.org/10.1371/journal.pgen.1000036

22. Wang J., Kang Z., Liu Y., Li Z., Liu Y., Liu J. Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning. Front Immunol. 2022;13:956078. https://doi.org/10.3389/fimmu.2022.956078

23. Bardina M., Pawelzikc S. C., Lagrangea J., Mahdic A., Arnardottirc H., Regnaulta V., Feved B., Lacolleya P., Michela J. B., Merciera N., Back M. The resolvin D 2 – GPR 18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice – ScienceDirect. https://doi.org/10.1016/j.bcp.2022.115075

24. Petri M. H., Laguna-Fernández A., Gonzalez-Diez M., Paulsson-Berne G., Hansson G. K., Bäck M. The role of the FPR 2/ALX receptor in atherosclerosis development and plaque stability. Cardiovasc Res. 2015;105(1):65–74. https://doi.org/10.1093/cvr/cvu224

25. Arnold K. A., Blair J. E., Paul J. D., Shah A. P., Nathan S., Alenghat F. J. Monocyte and Macrophage Subtypes as Paired Cell Biomarkers for Coronary Artery Disease. Exp Physiol. 2019;104(9):1343–52. https://doi.org/10.1113/EP087827

26. Williams H, Cassorla G, Pertsoulis N, Patel V, Vicaretti M, Marmash N, et al. Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease – International Angiology 2017;36(2):145–55. https://doi.org/10.23736/S0392–9590.16.03661–0

27. Ridker P. M. From CRP to IL-6 to IL-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ Res. 2016;118(1):145–56. https://doi.org/10.1161/CIRCRESAHA.115.306656

28. Utkina E. A., Afanasyeva O. I., Pokrovsky S. N. C-reactive protein: pathogenetic properties and a possible therapeutic target. Russian Journal of Cardiology. 2021;26(6):4138. https://doi.org/10.15829/1560–4071–2021–4138

29. Vlad M. L., Manea S. A., Lazar A. G., RaicuM., MuresianH., SimionescuM., идр. Histone Acetyltransferase-Dependent Pathways Mediate Upregulation of NADPH Oxidase 5 in Human Macrophages under Inflammatory Conditions: A Potential Mechanism of Reactive Oxygen Species Overproduction in Atherosclerosis. Oxid Med Cell Longev. 2019; 3201062. https://doi.org/10.1155/2019/3201062

30. Chen L., Huan X., Gao X. D., Yu W. H., Xiao G. H., Li T. F., идр. Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer. Cancers (Basel). 2022;14(23):5722. https://doi.org/10.3390/cancers14235722

31. Liu M., Doublié S., Wallace S. S. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat Res. 2013:4–11. https://doi.org/10.1016/j.mrf-mmm.2012.12.003

32. Skarpengland T., Holm S., Scheffler K., Gregersen I., Dahl T. B., Suganthan R., идр. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. SciRep. 2016;6:28337. https://doi.org/10.1038/srep28337

33. Kotlyarov S. N., Kotlyarova A. A. Participation of ABC transporters in lipid metabolism and the pathogenesis of atherosclerosis. Genes and cells. 2020; 15(3): 22–8. https://doi.org/10.23868/202011003

34. Pavlovich S. L. ATP-binding cassette transporters (ATP-binding cassette transporters, abc) family proteins. Nomenclature, structure, molecular diversity, function, participation in the functioning of the xenobiotic biotransformation system. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences. 2020; (3): 5–19. http://dx.doi.org/10.17076/eb1044

35. Peters L. J. F., Biessen E. A. L., Hohl M., Weber C., van der Vorst E. P. C., Santovito D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front Physiol. 2020;11:793. https://doi.org/10.3389/fphys.2020.00793

36. He S, Wu C, Xiao J, Li D, Sun Z, Li M. Endothelial extracellular vesiclesmodulate the macrophage phenotype: Potentialimplications in atherosclerosis. Scand J Immunol. 2018; 87: e12648. https://doi.org/10.1111/sji.1264816.

37. Panda A. C. Circular RNAs Act as miRNA Sponges. Circular RNAs: Biogenesis and Functions. Singapore: Springer. 2018: 67–79. https://doi.org/10.1007/978–981–13–1426–1_6

38. Alkan A. H., Akgül B. Endogenous miRNA Sponges. miRNomics: MicroRNA Biology and Computational Analysis. New York, NY: Springer US. 2022; 91–104. https://doi.org/10.1007/978–1–0716–1170–8_5

39. Montalto F. I., De Amicis F. Cyclin D 1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 9. 2020;9(12):2648. https://doi.org/10.3390/cells9122648

40. Yang L., Yang F., Zhao H., Wang M., Zhang Y. Circular RNA circCHFR Facilitates the Proliferation and Migration of Vascular Smooth Muscle via miR-370/FOXO1/Cyclin D 1 Pathway. Mol Ther Nucleic Acids. 2019;16:434–41. https://doi.org/10.1016/j.omtn.2019.02.028

41. Yu H., Zhao L., Zhao Y., Fei J., Zhang W. Circular RNA circ_0029589 regulates proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs by regulating miR-424–5p/IGF2 axis. Vascular Pharmacology. 2020;135:106782. https://doi.org/10.1016/j.vph.2020.106782

42. Guo D., Zhao Y., Wang N., You N., Zhu W., Zhang P., идр. GADD 45g acts as a novel tumor suppressor, and its activation suggests new combination regimens for the treatment of AML. Blood. 2021;138(6):464–79. https://doi.org/10.1182/blood.2020008229

43. Li Y., Wang B. Circular RNA circCHFR downregulation protects against oxidized low-density lipoprotein-induced endothelial injury via regulation of microRNA-15b-5p/ growth arrest and DNA damage inducible gamma. Bioengineered. 2022; 13(2):4481–92. https://doi.org/10.1080/21655979.2022.2032967


Review

For citations:


Roytman A.P., Markina N.S., Dolgov V.V. Possibilities of flow cytometry, PCR and sequencing in early diagnosis of atherosclerosis activity. Medical alphabet. 2024;(4):7-11. (In Russ.) https://doi.org/10.33667/2078-5631-2024-4-7-11

Views: 118


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)