

Вакцинация и современная терапия рака шейки матки
https://doi.org/10.33667/2078-5631-2023-36-42-50
Аннотация
Рак шейки матки является четвертым наиболее распространенным видом рака у женщин в мире и приводит к более чем 300 тыс. смертям во всем мире. Возбудителем рака шейки матки является персистирующая инфекция подтипами вируса папилломы человека высокого риска, а вирусные онкопротеины Е5, Е6 и Е7 взаимодействуют с факторами человека, вызывая и поддерживая злокачественный фенотип. В этом обзоре описываются механизмы возникновения и развития рака шейки матки, а также подробно обсуждаются многообещающие и эффективные новые методы лечения рака шейки матки, включая иммунотерапию, таргетную терапию и комбинированную терапию.
Об авторе
Г. Г. ХакимоваУзбекистан
Хакимова Гулноз Голибовна - к. м. н., доцент кафедры детской онкологии Ташкентский ПМУ, онколог-химиотерапевт Nano Medical Clinic.
Ташкент
Список литературы
1. Каприн А. Д., Старинский В. В., Шахзадова А. О. Состояние онкологической помощи населению России в 2021 г.
2. Cancer statistics, 2022.
3. IARC monographs on the evaluation of carcinogenic risks to humans. IARC (Int. Agency Res. Cancer) Monogr. Eval. Carcinog. Risks Hum. 2010; 93. DOI: 10.1136/jcp.48.7.691-a.
4. Johnson C. A., James D., Marzan A., Armaos M. Cervical cancer: An Overview of pathophysiology and management. Semin. Oncol. Nurs. 2019 DOI: 10.1016/j.soncn.2019.02.003.
5. Walboomers J. M.M., Jacobs M. V., Manos M. M., Bosch F. X., Kummer J. A., Shah K. V., Snijders P. J.F., Peto J., Meijer C. J.L.M., Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999; 189 DOI: 10.1002/(SICI)1096–9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.
6. zur Hausen H. Papillomaviruses in the causation of human cancers – a brief historical account. Virology. 2009.
7. Crosbie E. J., Einstein M. H., Franceschi S., Kitchener H. C. Human papillomavirus and cervical cancer. Lancet. 2013 DOI: 10.1016/S0140–6736(13)60022–7.
8. de Sanjosé S., Diaz M., Castellsagué X., Clifford G., Bruni L., Muñoz N., Bosch F. X. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: A meta-analysis. Lancet Infect. Dis. 2007; 7 DOI: 10.1016/s1473–3099(07)70158–5.
9. Bermudez A., Bhatla N., Leung E. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2015 DOI: 10.1016/j.ijgo.2015.06.004.
10. Small W., Bacon M. A., Bajaj A., Chuang L. T., Fisher B. J., Harkenrider M. M., Jhingran A., Kitchener H. C., Mileshkin L. R., Viswanathan A. N., Gaffney D. K. Cancer; 2017. Cervical Cancer: A Global Health Crisis.
11. Balasubramaniam S. D., Balakrishnan V., Oon C. E., Kaur G. 2019. Key Molecular Events in Cervical Cancer Development. Medicina (Lithuania).
12. Shanmugasundaram S., You J. Targeting persistent human papillomavirus infection. Viruses. 2017; 9 DOI: 10.3390/v9080229.
13. Pirami L., Giache V., Becciolini A. Analysis of HPV16, 18, 31, and 35 DNA in pre-invasive and invasive lesions of the uterine cervix. J. Clin. Pathol. 1997; 50: 600–604. DOI: 10.1136/jcp.50.7.600.
14. Cullen A. P., Reid R., Campion M., Lörincz A. T. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J. Virol. 1991; 65: 606–612. DOI: 10.1128/jvi.65.2.606–612.1991.
15. Vinokurova S., Wentzensen N., Kraus I., Klaes R., Driesch C., Melsheimer P., Kisseljov F., Dürst M., Schneider A., von Knebel Doeberitz M. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res. 2008; 68: 307–313. DOI: 10.1158/0008–5472.can-07–2754.
16. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer. 2002; 2: 342–350. DOI: 10.1038/nrc798.
17. Hwang E.-S., Nottoli T., Dimaio D. The HPV16 E 5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology. 1995; 211: 227–233. DOI: 10.1006/viro.1995.1395.
18. Miura S., Kawana K., Schust D. J., Fujii T., Yokoyama T., Iwasawa Y., Nagamatsu T., Adachi K., Tomio A., Tomio K., Kojima S., Yasugi T., Kozuma S., Taketani Y. CD 1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E 5 protein: A possible mechanism for immune evasion by HPV. J. Virol. 2010; 84: 11614–11623. DOI: 10.1128/jvi.01053–10.
19. Zhang B., Li P., Wang E., Brahmi Z., Dunn K. W., Blum J. S., Roman A. The E 5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ Virology. 2003; 310: 100–108. DOI: 10.1016/s0042–6822(03)00103-x.
20. Ashrafi G. H., Haghshenas M., Marchetti B., Campo M. S. E 5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer. 2006; 119: 2105–2112. DOI: 10.1002/ijc.22089.
21. Cortese M. S., Ashrafi G. H., Campo M. S. All 4 di-leucine motifs in the first hydrophobic domain of the E 5 oncoprotein of human papillomavirus type 16 are essential for surface MHC class I downregulation activity and E 5 endomembrane localization. Int. J. Cancer. 2010. DOI: 10.1002/ijc.25004.NA-NA.
22. Balasubramaniam S. D., Balakrishnan V., Oon C. E., Kaur G. Key molecular events in cervical cancer development. Medicina (B Aires) 2019; 55: 384. DOI: 10.3390/medicina55070384.
23. Pal A., Kundu R. Human papillomavirus E 6 and E 7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol. 2020; 10. DOI: 10.3389/fmicb.2019.03116.
24. Yeo-Teh N.S.L., Ito Y., Jha S. High-risk human papillomaviral oncogenes E 6 and E 7 target key cellular pathways to achieve oncogenesis. Int. J. Mol. Sci. 2018 DOI: 10.3390/ijms19061706.
25. Gupta S., Kumar P., Das B. C. HPV: Molecular pathways and targets. Curr. Probl. Cancer. 2018. DOI: 10.1016/j.currproblcancer.2018.03.003.
26. Villiers E.-M.D., Schneider A., Miklaw H., Papendick U., Wagner D., Wesch H., Wahrendorf J., Hausen H. Z. Human papillomavirus infections IN women with and without abnormal cervical cytology. Lancet. 1987; 330:703–706. DOI: 10.1016/S0140–6736(87)91072–5.
27. Pal A., Kundu R. Human papillomavirus E 6 and E 7: the cervical cancer hallmarks and targets for therapy. Front. Microbiol. 2020. DOI: 10.3389/fmicb.2019.03116.
28. McBride A.A., Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017; 13. DOI: 10.1371/journal.ppat.1006211.
29. Kagabu M., Nagasawa T., Sato C., Fukagawa Y., Kawamura H., Tomabechi H., Takemoto S., Shoji T., Baba T. Immunotherapy for uterine cervical cancer using checkpoint inhibitors: Future directions. Int. J. Mol. Sci. 2020. DOI: 10.3390/ijms21072335.
30. Peralta-Zaragoza O., Bermúdez-Morales V.H., Pérez-Plasencia C., Salazar-León J., Gómez-Cerón C., Madrid-Marina V. 2012. Targeted Treatments for Cervical Cancer: A Review, OncoTargets and Therapy.
31. Jazaeri A. A., Zsiros E., Amaria R. N., Artz A. S., Edwards R. P., Wenham R. M., Slomovitz B. M., Walther A., Thomas S. S., Chesney J. A., Morris R., Matsuo K., Gaillard S., Rose P. G., Donas J. G., Tromp J. M., Tavakkoli F., Li H., Fardis M., Monk B. J. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 2019. DOI: 10.1200/jco.2019.37.15_suppl.2538.
32. Kenter G. G., Welters M. J.P., Valentijn A. R.P.M., Lowik M. J.G., Berends-van der Meer D. M.A., Vloon A. P.G., Essahsah F., Fathers L. M., Offringa R., Drijfhout J. W., Wafelman A. R., Oostendorp J., Fleuren G. J., van der Burg S. H., Melief C. J.M. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009: 361. DOI: 10.1056/nejmoa0810097.
33. Mauricio D., Zeybek B., Tymon-Rosario J., Harold J., Santin A. D. Immunotherapy in cervical cancer. Curr. Oncol. Rep. 2021; 23. DOI: 10.1007/s11912–021–01052–8.
34. Enwere E. K., Kornaga E. N., Dean M., Koulis T. A., Phan T., Kalantarian M., Köbel M., Ghatage P., Magliocco A. M., Lees-Miller S.P., Doll C. M. Expression of PD-L1 and presence of CD 8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod. Pathol. 2017; 30. DOI: 10.1038/modpathol.2016.221.
35. Reddy O. L., Shintaku P. I., Moatamed N. A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol. 2017; 12. DOI: 10.1186/s13000–017–0631–6.
36. Mezache L., Paniccia B., Nyinawabera A., Nuovo G. J. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol. 2015; 28. DOI: 10.1038/modpathol.2015.108.
37. Browne I., Fennelly D. W., Crown J., Murray H. The efficacy and safety of pembrolizumab in advanced cervical cancer – a real world treatment study in an Irish healthcare setting. J. Clin. Oncol. 2020; 38. DOI: 10.1200/jco.2020.38.15_suppl.e18007.
38. Frenel J. S., le Tourneau C., O’Neil B., Ott P. A., Piha-Paul S.A., Gomez-Roca C., van Brummelen E. M.J., Rugo H. S., Thomas S., Saraf S., Rangwala R., Varga A. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: Results from the phase IB KEYNOTE-028 trial. J. Clin. Oncol. 2017. DOI: 10.1200/jco.2017.74.5471.
39. Wendel Naumann R., Hollebecque A., Meyer T., Devlin M. J., Oaknin A., Kerger J., López-Picazo J.M., Machiels J. P., Delord J. P., Evans T. R.J., Boni V., Calvo E., Topalian S. L., Chen T., Soumaoro I., Li B., Gu J., Zwirtes R., Moore K. N. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: results from the phase I/II CheckMate 358 trial. J. Clin. Oncol. 2019; 37. DOI: 10.1200/jco.19.00739.
40. Leach D. R., Krummel M. F., Allison J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996: 271. DOI: 10.1126/science.271.5256.1734.1979.
41. Duranti S., Pietragalla A., Daniele G., Nero C., Ciccarone F., Scambia G., Lorusso D. Role of immune checkpoint inhibitors in cervical cancer: From preclinical to clinical data. Cancers. 2021; 13. DOI: 10.3390/cancers13092089.
42. Lheureux S., Butler M. O., Clarke B., Cristea M. C., Martin L. P., Tonkin K., Fleming G. F., Tinker A.v., Hirte H. W., Tsoref D., Mackay H., Dhani N. C., Ghatage P., Weberpals J., Welch S., Pham N. A., Motta V., Sotov V., Wang L., Karakasis K., Udagani S., Kamel-Reid S., Streicher H. Z., Shaw P., Oza A. M. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol. 2018. DOI: 10.1001/jamaoncol.2017.3776.
43. da Silva D. M., Enserro D. M., Mayadev J. S., Skeate J. G., Matsuo K., Pham H. Q., Lankes H. A., Moxley K. M., Ghamande S. A., Lin Y. G., Schilder R. J., Birrer M. J., Kast W. M. vol. 26. Clinical Cancer Research; 2021. (Immune Activation in Patients with Locally Advanced Cervical Cancer Treated with Ipilimumab Following Definitive Chemoradiation [GOG-9929]).
44. Naumann R. W., Oaknin A., Meyer T., Lopez-Picazo J.M., Lao C., Bang Y.-J., Boni V., Sharfman W. H., Park J. C., Devriese L. A., Harano K., Chung C. H., Topalian S. L., Zaki K., Chen T., Gu J., Li B., Barrows A., Horvath A., Moore K. N. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358. Ann. Oncol. 2019; 30. DOI: 10.1093/annonc/mdz394.059.
45. Eskander R. N., Tewari K. S. Clinical Therapeutics; 2015. Immunotherapy: An Evolving Paradigm in the Treatment of Advanced Cervical Cancer.
46. Geukes Foppen M. H., Donia M., Svane I. M., Haanen J. B.A.G. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 2015; 9. DOI: 10.1016/j.molonc.2015.10.018.
47. Wrzesinski C., Restifo N. P. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy.Curr.Opin.Immunol. 2005; 17. DOI: 10.1016/j.coi.2005.02.002.
48. Rischin D., Gil-Martin M., González-Martin A., Braña I., Hou J. Y., Cho D., Falchook G. S., Formenti S., Jabbour S., Moore K., Naing A., Papadopoulos K. P., Baranda J., Fury W., Feng M., Stankevich E., Li J., Yama-Dang N.A., Yoo S. Y., Lowy I., Mathias M., Fury M. G. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. Gynecol. Oncol. 2020. DOI: 10.1016/j.ygyno.2020.08.026.
49. O’Malley D.M., Oaknin A., Monk B. J., Selle F., Rojas C., Gladieff L., Berton D., Leary A., Moore K. N., Estevez-Diz M.D.P., Hardy-Bessard A.C., Alexandre J., Opperman C. P., de Azevedo C. R.A.S., Randall L. M., Feliu W. O., Ancukiewicz M., Ray-Coquard I. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/ or metastatic cervical cancer. Gynecol. Oncol. 2021; 163. DOI: 10.1016/j.ygyno.2021.08.018.
50. Stevanović S., Draper L. M., Langhan M. M., Campbell T. E., Kwong M. L., Wunderlich J. R., Dudley M. E., Yang J. C., Sherry R. M., Kammula U. S., Restifo N. P., Rosenberg S. A., Hinrichs C. S. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted TILs. J. Clin. Oncol. 2015; 33. DOI: 10.1200/jco.2014.58.9093.
51. Stewart B. W., Wild C. P. IARC WHO; 2014. World Cancer Report 2014.
52. Chabner B. A., Roberts T. G. Chemotherapy and the war on cancer. Nat. Rev. Cancer. 2005; 5. DOI: 10.1038/nrc1529.
53. Tsuda N., Watari H., Ushijima K. Chemotherapy and molecular targeting therapy for recurrent cervical cancer. Chin. J. Cancer Res. 2016 DOI: 10.21147/j.issn.1000–9604.2016.02.14.
54. Gottesman M. M., Fojo T., Bates S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002. DOI: 10.1038/nrc706.
55. Chabner B. A., Roberts T. G. Chemotherapy and the war on cancer. Nat. Rev. Cancer. 2005; 5. DOI: 10.1038/nrc1529.
56. Malumbres M., Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009; 9: 153–166. DOI: 10.1038/nrc2602.
57. Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–674. DOI: 10.1016/j.cell.2011.02.013.
58. Ghelli Luserna di Rorà A., Cerchione C., Martinelli G., Simonetti G. A WEE 1 family business: Regulation of mitosis, cancer progression, and therapeutic target. J. Hematol. Oncol. 2020; 13: 126. DOI: 10.1186/s13045–020–00959–2.
59. Otto T., Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer. 2017. DOI: 10.1038/nrc.2016.138.
60. Lee Y. Y., Cho Y. J., won Shin S., Choi C., Ryu J. Y., Jeon H. K., Choi J. J., Hwang J. R., Choi C. H., Kim T. J., Kim B. G., Bae D. S., Park W., Lee J. W. Anti-Tumor effects of Wee1 kinase inhibitor with radiotherapy in human cervical cancer. Sci. Rep. 2019; 9: 1–11. DOI: 10.1038/s41598–019–51959–3.
61. Matheson C. J., Backos D. S., Reigan P. Targeting WEE 1 kinase in cancer.TrendsPharmacol. Sci.2016; 37: 872881. DOI: 10.1016/j.tips.2016.06.06.
62. Do K., Doroshow J. H., Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle. 2013. DOI: 10.4161/cc.26062.
63. Ghelli Luserna Di Rorà A., Cerchione C., Martinelli G., Simonetti G. A WEE 1 family business: Regulation of mitosis, cancer progression, and therapeutic target. J. Hematol. Oncol. 2020; 13: 1–17. DOI: 10.1186/s13045–020–00959–2.
64. Lee Y. Y., Cho Y. J., won Shin S., Choi C., Ryu J. Y., Jeon H. K., Choi J. J., Hwang J. R., Choi C. H., Kim T. J., Kim B. G., Bae D. S., Park W., Lee J. W. Anti-Tumor effects of Wee1 kinase inhibitor with radiotherapy in human cervical cancer. Sci. Rep. 2019; 9. DOI: 10.1038/s41598–019–51959–3.
65. Lemmon M. A., Schlessinger J., Ferguson K. M. The EGFR family: Not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspect. Biol. 2014; 6: a020768. DOI: 10.1101/cshperspect.a020768.a020768.
66. Rude Voldborg B., Damstrup L., Spang-Thomsen M., Skovgaard Poulsen H. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol. 1997; 8: 1197–1206. DOI: 10.1023/a:1008209720526.
67. Chen Q., Huang Y., Shao L., Han-Zhang H., Yang F., Wang Y., Liu J., Gan J. An EGFR-amplified cervical squamous cell carcinoma patient with pulmonary metastasis benefits from afatinib: A case report. Onco Targets Ther. 2020; 13. DOI: 10.2147/ott.S236382.
68. Kato S., Okamura R., Mareboina M., Lee S., Goodman A., Patel S. P., Fanta P. T., Schwab R. B., Vu P., Raymond V. M., Lanman R. B., Sicklick J. K., Lippman S. M., Kurzrock R. JCO Precision Oncology; 2019. Revisiting Epidermal Growth Factor Receptor (EGFR) Amplification as a Target for Anti-EGFR Therapy: Analysis of Cell-free Circulating Tumor DNA in Patients with Advanced Malignancies.
69. Tian W. J., Huang M. L., Qin Q. F., Chen Q., Fang K., Wang P. L. Prognostic impact of epidermal growth factor receptor overexpression in patients with cervical cancer: A meta-analysis. PLoS One. 2016; 11. DOI: 10.1371/journal.pone.0158787.
70. Schilder R., Sill M., Lee Y.-C., Mannel R. A phase II trial of Erlotinib in recurrent squamous cell carcinoma of the cervix: A Gynecologic Oncology Group Study. Int. J. Gynecol. Cancer. 2009.
71. Goncalves A., Fabbro M., Lhommé C., Gladieff L., Extra J. M., Floquet A., Chaigneau L., Carrasco A. T., Viens P. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol. Oncol. 2008. DOI: 10.1016/j.ygyno.2007.07.057.
72. Benson R., Pathy S., Kumar L., Mathur S., Dadhwal V., Mohanti B. Locally advanced cervical cancer – neoadjuvant chemotherapy followed by concurrent chemoradiation and targeted therapy as maintenance: A phase II study. J. Cancer Res. Therapeut. 2019; 15: 1359. DOI: 10.4103/jcrt.jcrt_39_18.
73. Li F., Zhao C., Wang L. Molecular-targeted agents combination therapy for cancer: Developments and potentials. Int. J. Cancer. 2014. DOI: 10.1002/ijc.28261.
74. Tinker A. V., Ellard S., Welch S., Moens F., Allo G., Tsao M. S., Squire J., Tu D., Eisenhauer E. A., MacKay H. Phase II study of temsirolimus (CCI-779) in women with recurrent, unresectable, locally advanced or metastatic carcinoma of the cervix. A trial of the NCIC Clinical Trials Group (NCIC CTG IND 199) Gynecol. Oncol. 2013; 130: 269–274. DOI: 10.1016/j.ygyno.2013.05.008.
75. Folkman J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007; 6. DOI: 10.1038/nrd2115.
76. Sherwood L. M., Parris E. E., Folkman J. Tumor angiogenesis: Therapeutic implications. N. Engl. J.
77. Tsuda N., Watari H., Ushijima K. Chemotherapy and molecular targeting therapy for recurrent cervical cancer. Chin. J. Cancer Res. 2016. DOI: 10.21147/j.issn.1000–9604.2016.02.14.
78. Med. 1971; 285. DOI: 10.1056/nejm197111182852108.
79. Hicklin D. J., Ellis L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005; 23. DOI: 10.1200/jco.2005.06.081.
80. Monk B. J., Lopez L. M., Zarba J. J., Oaknin A., Tarpin C., Termrungruanglert W., Alber J. A., Ding J., Stutts M. W., Pandite L. N. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J. Clin. Oncol. 2010 DOI: 10.1200/jco.2009.26.9571.
81. Gerber H. P., Ferrara N. vol. 65. Cancer Research; 2005. (Pharmacology and Pharmacodynamics of Bevacizumab as Monotherapy or in Combination with Cytotoxic Therapy in Preclinical Studies).
82. Hurwitz H., Dowlati A., Savage S., Fernando N., Lasalvia S., Whitehead B., Suttle B., Collins D., Ho P., Pandite L. Safety, tolerability and pharmacokinetics of oral administration of GW786034 in pts with solid tumors. J. Clin. Oncol. 2005; 23. DOI: 10.1200/jco.2005.23.16suppl.3012.
83. Yang P., Chen N., Yang D., Crane J., Yang S., Wang H., Dong R., Yi X., Xie L., Jing G., Cai J., Wang Z. The ratio of serum Angiopoietin-1 to Angiopoietin-2 in patients with cervical cancer is a valuable diagnostic and prognostic biomarker. PeerJ. 2017; 5: e3387. DOI: 10.7717/peerj.3387.
84. Shim W., Ming T., Bapna A., Kim I., Koh G., Mack P., Ge R. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp. Cell Res. 2002; 279: 299–309. DOI: 10.1006/excr.2002.5597.
85. Tewari K. S., Sill M. W., Long H. J., Penson R. T., Huang H., Ramondetta L. M., Landrum L. M., Oaknin A., Reid T. J., Leitao M. M., Michael H. E., Monk B. J. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 2014 DOI: 10.1056/nejmoa1309748.
86. Shoji T., Takeshita R., Mukaida R., Takatori E., Nagasawa T., Omi H., Sugiyama T. Safe administration of bevacizumab combination chemotherapy for the patients with recurrent cervical cancer after pelvic radiotherapy: Two case reports. Mol. Clin. Oncol. 2018. DOI: 10.3892/mco.2018.1642.
87. Kumar L., Harish P., Malik P. S., Khurana S. Chemotherapy and targeted therapy in the management of cervical cancer. Curr. Probl. Cancer. 2018. DOI: 10.1016/j.currproblcancer.2018.01.016.
88. Green J. A., Kirwan J. J., Tierney J., Vale C. L., Symonds P. R., Fresco L. L., Williams C., Collingwood M. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst. Rev. 2005 DOI: 10.1002/14651858.cd002225.pub2.
89. Baxevanis C. N., Perez S. A., Papamichail M. Cancer Immunology; Immunotherapy: 2009. Combinatorial Treatments Including Vaccines, Chemotherapy and Monoclonal Antibodies for Cancer Therapy.
90. Tewari K. S., Sill M. W., Long H. J., Penson R. T., Huang H., Ramondetta L. M., Landrum L. M., Oaknin A., Reid T. J., Leitao M. M., Michael H. E., Monk B. J. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 2014 DOI: 10.1056/nejmoa1309748.
91. Penson R. T., Huang H. Q., Wenzel L. B., Monk B. J., Stockman S., Long H. J., Ramondetta L. M., Landrum L. M., Oaknin A., Reid T. J.A., Leitao M. M., Method M., Michael H., Tewari K. S. Bevacizumab for advanced cervical cancer: patient-reported outcomes of a randomised, phase 3 trial (NRG Oncology-Gynecologic Oncology Group protocol 240) Lancet Oncol. 2015; 16. DOI: 10.1016/s1470–2045(15)70004–5.
92. Tewari K. S., Sill M. W., Penson R. T., Huang H., Ramondetta L. M., Landrum L. M., Oaknin A., Reid T. J., Leitao M. M., Michael H. E., DiSaia P.J., Copeland L. J., Creasman W. T., Stehman F. B., Brady M. F., Burger R. A., Thigpen J. T., Birrer M. J., Waggoner S. E., Moore D. H., Look K. Y., Koh W. J., Monk B. J. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240) Lancet. 2017; 390. DOI: 10.1016/s0140–6736(17)31607–0.
93. Farley J., Sill M. W., Birrer M., Walker J., Schilder R. J., Thigpen J. T., Coleman R. L., Miller B. E., Rose P. G., Lankes H. A. Phase II study of cisplatin plus cetuximab in advanced, recurrent, and previously treated cancers of the cervix and evaluation of epidermal growth factor receptor immunohistochemical expression: A Gynecologic Oncology Group study. Gynecol. Oncol. 2011. DOI: 10.1016/j.ygyno.2011.01.030.
94. Santin A. D., Sill M. W., McMeekin D.S., Leitao M. M., Brown J., Sutton G. P., van Le L., Griffin P., Boardman C. H. Phase II trial of cetuximab in the treatment of persistent or recurrent squamous or non-squamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. Gynecol. Oncol. 2011. DOI: 10.1016/j.ygyno.2011.05.040.
95. Kurtz J. E., Hardy-Bessard A.C., Deslandres M., Lavau-Denes S., Largillier R., Roemer-Becuwe C., Weber B., Guillemet C., Paraiso D., Pujade-Lauraine E. Cetuximab, topotecan and cisplatin for the treatment of advanced cervical cancer: a phase II GINECO trial, Gynecol. Oncol. 2009. DOI: 10.1016/j.ygyno.2008.12.040.
96. Kunos C., Deng W., Dawson D., Lea J. S., Zanotti K. M., Gray H. J., Bender D. P., Guaglianone P. P., Carter J. S., Moore K. N. A phase I–II evaluation of veliparib (NSC #737664), topotecan, and filgrastim or pegfilgrastim in the treatment of persistent or recurrent carcinoma of the uterine cervix: an NRG oncology/gynecologic oncology group study. Int. J. Gynecol. Cancer. 2015; 25. DOI: 10.1097/igc.0000000000000380.
97. Thaker P. H., Salani R., Brady W. E., Lankes H. A., Cohn D. E., Mutch D. G., Mannel R. S., Bell-McGuinn K.M., di Silvestro P. A., Jelovac D., Carter J. S., Duan W., Resnick K. E., Dizon D. S., Aghajanian C., Fracasso P. M. A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: An NRG Oncology Study (NCT#01281852) Ann. Oncol. 2017; 28. DOI: 10.1093/annonc/mdw635.
98. Aghamiri S., talaei S., Roshanzamiri S., Zandsalimi F., Fazeli E., Aliyu M., Kheiry Avarvand O., Ebrahimi Z., Keshavarz-Fathi M., Ghanbarian H. Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy. Expert Opin. Drug Deliv. 2020. DOI: 10.1080/17425247.2020.1747429.
99. Sato N., Saga Y., Uchibori R., Tsukahara T., Urabe M., Kume A., Fujiwara H., Suzuki M., Ozawa K., Mizukami H. Eradication of cervical cancer in vivo by an AAV vector that encodes shRNA targeting human papillomavirus type 16 E 6/E 7. Int. J. Oncol. 2018. DOI: 10.3892/ijo.2018.4245.
100. Hsu P. D., Lander E. S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157. DOI: 10.1016/j.cell.2014.05.010.
101. Yip B. H. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules. 2020; 10. DOI: 10.3390/biom10060839.
102. Zhen S., Hua L., Takahashi Y., Narita S., Liu Y. H., Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 2014 DOI: 10.1016/j.bbrc.2014.07.014.
103. Hu Z., Yu L., Zhu D., Ding W., Wang X., Zhang C., Wang L., Jiang X., Shen H., He D., Li K., Xi L., Ma D., Wang H. Disruption of HPV16-E 7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res. Int. 2014. DOI: 10.1155/2014/612823.
104. Yoshiba T., Saga Y., Urabe M., Uchibori R., Matsubara S., Fujiwara H., Mizukami H. CRISPR/ Cas9-mediated cervical cancer treatment targeting human papillomavirus E 6. Oncol. Lett. 2019. DOI: 10.3892/ol.2018.9815.
105. Paddison P. J., Hannon G. J. RNA interference: The new somatic cell genetics? Cancer Cell. 2002; 2. DOI: 10.1016/s1535–6108(02)00092–2.
106. Canfell K. Towards the global elimination of cervical cancer. Papillomavirus Res. 2019; 8. DOI: 10.1016/j.pvr.2019.100170.
Рецензия
Для цитирования:
Хакимова Г.Г. Вакцинация и современная терапия рака шейки матки. Медицинский алфавит. 2023;(36):42-50. https://doi.org/10.33667/2078-5631-2023-36-42-50
For citation:
Khakimova G.G. Vaccination and modern therapy of cervical cancer. Medical alphabet. 2023;(36):42-50. (In Russ.) https://doi.org/10.33667/2078-5631-2023-36-42-50