Preview

Медицинский алфавит

Расширенный поиск

Антивирусные свойства грудного молока: новая сфера исследований

https://doi.org/10.33667/2078-5631-2023-8-64-68

Аннотация

Женское молоко уникальным образом сочетает в себе нутритивные, иммунологические, энзиматические и гормональные свойства. Уже более полувека изучаются свойства секреторного IgA (sIgA), более 30 лет –  роль олигосахаридов, более 10 лет обсуждается значение стволовых клеток грудного молока. Широкий интерес, в том числе в связи с SARS-CoV-2, ВИЧ, рота-, норо-, герпес- и другими вирусными инфекциями вызвали различные (более 10 видов) защитные факторы с противовирусной активностью, присутствующие в женском молоке. В данном обзоре рассмотрены свойства и значение иммуноглобулинов, лактоферрина, олигосахаридов, лизоцима, цитокинов в качестве противовирусных факторов, имеющих как научное, так и практическое значение.

Об авторах

С. Г. Грибакин
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Грибакин Сергей Германович, д. м. н., профессор кафедры диетологии и нутрициологии

Москва



С. В. Орлова
ФГАОУ ВО «Российский университет дружбы народов»
Россия

Орлова Светлана Владимировна, д. м. н., проф., зав. кафедрой диетологии и клинической нутрициологии

Москва



И. В. Подопригора
ФГАОУ ВО «Российский университет дружбы народов»
Россия

Подопригора Ирина Викторовна, к. м. н., доцент, зав. кафедрой микробиологии им. В. С. Киктенко медицинского факультета

Москва



Список литературы

1. Gribakin S. G., Bokovskaya O. A., Davydovskaya A. A. Child nutrition and immunity: in pursuit of the ideal. Attending physician. 2013. No. 8. P. 72–76.

2. Hanson L. Breastfeeding provides passive and likely long-lasting active immunity. Ann Allergy Asthma Immunol. 1998;6:523–33. DOI: 10.1016/S 1081–1206(10)62704–4

3. Jatsyk G. V., Kuvaeva I. B., Gribakin S. G. Immunological protection of the neonatal gastrointestinal tract: the importance of breast feeding. Acta Paediatr Scand. 1985 Mar;74(2):246–9. DOI: 10.1111/j.1651–2227.1985.tb10958.x

4. Kunizhev S. M., Chepurnoy I. P., Ladodo K. S. Gribakin S. G., Khodjibekova N. A. Carbohydrate composition of human milk. Vopr. Nutrition. 1985. No. 4. S. 69–71.

5. Thurl S., Munzert M., Boehm G., Catherine Matthews C., B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev., 2017 Nov; 1;75(11):920–933. DOI: 10.1093/nutrit/nux044

6. De Nisi G., Moro G., Arslanoglu S., Amalia M Ambruzzi, Augusto Biasini Claudio Profeti, Paola Tonetto, Enrico Bertino E. Survey of Italian human milk banks. J. Hum. Lact. 2015;31(2):294–300. DOI: 10.1177/0890334415573502. Epub 2015 Feb 26.

7. Яцык Г. В., Грибакин С. Г., Михайлова З. М. Банк грудного молока для недоношенных детей // Вопросы охраны материнства и детства. 1990;35(1):31–33.

8. Bode L., Kuhn L., Kim H. Y., Hsiao L., Nissan C., Sinkala M., Kankasa C., Mwiya M., Thea D. M., Aldrovandi G. M. Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am. J. Clin. Nutr. 2012;96:831–839.

9. Gao X., McMahon R.J., Woo J. G., Davidson B. S., Morrow A. L., Zhang Q. Temporal changes in milk proteomes reveal developing milk functions. J. Proteom. Res. 2012;11:3897–3907.

10. Brandtzaeg P., Johansen F. E. IgA and intestinal homeostasis. In Mucosal Immune Defense: Immunoglobulin A; Springer: Boston, MA, USA, 2007. P. 221–268.

11. Corthésy B. Roundtrip ticket for secretory IgA: Role in mucosal homeostasis? J. Immunol. 2007;178:27–32.

12. Newburg D. S., Walker W. Protection of the Neonate by the Innate Immune System of Developing Gut and of Human Milk. Pediatr. Res. 2007;61:2–8.

13. Brandtzaeg P. Mucosal immunity: Integration between mother and the breast-fed infant. Vaccine. 2003;21:3382–3388.

14. Demers-Mathieu V., Underwood M. A., Beverly R. L., Nielsen S. D., Dallas D. C. Comparison of human milk immunoglobulin survival during gastric digestion between preterm and term infants. Nutrients. 2018;10:631.

15. Schlaudecker E. P., Steinhoff M. C., Omer S. B., McNeal M.M., Roy E., Arifeen S. E., Dodd C. N., Raqib R.,; Breiman R. F.,; Zaman K. IgA and neutralizing antibodies to influenza a virus in human milk: A randomized trial of antenatal influenza immunization. PLoS ONE. 2013;8: e70867.

16. Fox A., Marino J., Amanat F., Krammer F., Hahn-Holbrook J., Zolla-Pazner S., Powell R. L. Robust and specific secretory IgA against SARS-CoV-2 detected in human milk. Iscience. 2020;23:101735.

17. Pace R. M., Williams J. E., Järvinen K. M., Belfort M. B., Pace C. D., Lackey K. A., Gogel A. C., Nguyen-Contant P.,; Kanagaiah P., Fitzgerald T. et al. COVID-19 and human milk: SARSCoV-2, antibodies, and neutralizing capacity. Medrxiv 2020.

18. Foster J. P., Seth R., Cole M. J. Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth weight neonates. Cochrane Database Syst. Rev. 2016, 4.

19. Lewis E. D., Richard C., Larsen B. M., Field C. J. The importance of human milk for immunity in preterm infants. Clin. Perinatol. 2017;44:23–47.

20. Smilowitz J. T., Lebrilla C. B., Mills D. A., German J. B., Freeman S. L. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate. Annu. Rev. Nutr. 2014;34:143–169.

21. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22:1147–1162.

22. Eriksen K. G., Christensen S. H., Lind M. V., Michaelsen K. F. Human milk composition and infant growth. Curr. Opin. Clin. Nutr. Metab. 2018;21:200–206.

23. Wicinski M., Sawicka E., Gębalski JKubiak K., Malinowski B. Human milk oligosaccharides: Health benefits, potential applications in infant formulas, and pharmacology. Nutrients. 2020;12:266.

24. Roberfroid M., Gibson G. R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., Guarner F., Respondek F., Whelan K., Coxam V., Davicco M. J., Léotoing L., Wittrant Y., Delzenne N. M., Cani P. D., Neyrinck A. M., Meheust A. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010 Aug;104. Suppl 2: S 1–63. DOI: 10.1017/S0007114510003363

25. Morozov V., Hansman G., Hanisch F. G., Schroten H., Kunz C. Human milk oligosaccharides as promising antivirals. Mol. Nutr. Food Res. 2018;62:1700679.

26. Guerrero C. A., Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J. Virol. 2016;5:38–62.

27. Etzold S., Bode L. Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr. Opin. Virol. 2014;7:101–107.

28. Pannaraj P. S., Li F., Cerini C., Bender J. M., Yang S., Rollie A., Adisetiyo H., Zabih S., Lincez P. J., Bittinger K. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171:647–654.

29. Steenhout P., Sperisen P., Martin F. P., Sprenger N., Wernimont S., Pecquet S., Berger B. Term Infant Formula Supplemented with Human Milk Oligosaccharides (20 Fucosyllactose and Lacto-N-neotetraose) Shifts Stool Microbiota and Metabolic Signatures Closer to that of Breastfed Infants. FASEB J. 2016;30:275–277.

30. Donovan S. M., Comstock S. S. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann. Nutr. Metab. 2016;69:41–51.

31. Parashar U. D., Hummelman E. G., Bresee J. S., Miller M. A., Glass R. I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 2003, 9, 565–572.

32. López S., Arias C. F. Multistep entry of rotavirus into cells: A Versaillesque dance. Trends Microbiol. 2004;12:271–278.

33. Charpilienne A., Abad M. J., Michelangeli F., Alvarado F., Vasseur M., Cohen J., Ruiz, M. C. Solubilized and cleaved VP7, the outer glycoprotein of rotavirus, induces permeabilization of cell membrane vesicles. J. Gen. Virol. 1997;78:1367–1371.

34. Chemello M. E., Aristimuño O. C., Michelangeli F., Ruiz M. C. Requirement for vacuolar H+-ATPase activity and Ca2+ gradient during entry of rotavirus into MA104 cells. J. Virol. 2002;76:13083–13087.

35. Laucirica D. R., Triantis V., Schoemaker R., Estes M. K., Ramani S. Milk oligosaccharides inhibit human rotavirus infectivity in MA104 cells. J. Nutr. 2017;147: 1709–1714.

36. Chassaing M., Boudaud N., Belliot G., Estienney M., Majou D., de Rougemont A., Gantzer C. Interaction between norovirus and Histo-Blood Group Antigens: A key to understanding virus transmission and inactivation through treatments? Food Microbiol. 2020;92:103594.

37. Tan M., Jiang X. Norovirus–host interaction: Multi-selections by human histo-blood group antigens. Trends Microbiol. 2011;19:382–388.

38. Schroten H., Hanisch F. G., Hansman G. S. Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides. J. Virol. 2016;90:5855–5859.

39. Hanisch F. G., Hansman G. S., Morozov V., Kunz C.,; Schroten H. Avidity of α-fucose on human milk oligosaccharides and blood group-unrelated oligo/polyfucoses is essential for potent norovirus-binding targets. J. Biol. Chem. 2018;293:11955–11965.

40. Eldholm V., Rieux A., Monteserin J., Lopez J. M., Palmero D., Lopez B., Ritacco V., Didelot X., Balloux F. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. eLife 2016, 5, e16644.

41. Little K. M., Kilmarx P. H., Taylor A. W., Rose C. E., Rivadeneira E. D., Nesheim S. R. A review of evidence for transmission of HIV from children to breastfeeding women and implications for prevention. Pediatr. Infect. Dis. J. 2012;31:938–942.

42. Granelli-Piperno A., Pritsker A., Pack M., Shimeliovich I., Arrighi J. F., Park C. G., Trumpfheller C., Piguet V., Moran T. M., Steinman R. M. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD 209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol. 2005;175:4265–4273.

43. Woodham A. W., Skeate J. G., Sanna A. M., Taylor J. R., Da Silva D. M., Cannon P. M., Kast W. M. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDs. 2016;30:291–306.

44. Hong P., Ninonuevo M. R., Lee B., Lebrilla C., Bode L. Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br. J. Nutr. 2008;101:482–486.

45. Van Niekerk E., Autran C. A., Nel D. G., Kirsten G. F., Blaauw, R., Bode L. Human milk oligosaccharides differ between HIVinfected and HIV-uninfected mothers and are related to necrotizing enterocolitis incidence in their preterm very-low-birth-weight infants. J. Nutr. 2014;144:1227–1233.

46. Rai D., Adelman A. S., Zhuang W., Rai G. P., Boettcher J., Lönnerdal B. Longitudinal changes in lactoferrin concentrations in human milk: A global systematic review. Crit. Rev. Food Sci. Nutr. 2014;54:1539–1547.

47. Perrin M. T., Fogleman A. D., Newburg D. S., Allen J. C. A longitudinal study of human milk composition in the second year postpartum: Implications for human milk banking. Matern. Child Nutr. 2017;13: e12239.

48. Demmelmair H., Prell C., Timby N., Lönnerdal B. Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants. Nutrients 2017;9:817.

49. Legrand D. Overview of lactoferrin as a natural immune modulator. J. Pediatr. 2016;173: S 10–S 15.

50. Van der Strate B. W.A., Beljaars L., Molema G., Harmsen M. C., Meijer D. K.F. Antiviral activities of lactoferrin. Antivir. Res. 2001;52:225–239.

51. Redwan E. M., Uversky V. N., El-Fakharany E.M., Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C. R. Biol. 2014;337:581–595.

52. Andersen J. H., Osbakk S. A., Vorland L. H., Traavik T., Gutteberg T. J. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antivir. Res. 2001;51:141–149.

53. Marchetti M., Pisani S., Antonini G., Valenti P., Seganti L., Orsi N. Metal complexes of bovine lactoferrin inhibit in vitro replication of herpes simplex virus type 1 and 2. Biometals 1998;11:89–94.

54. Swart P. J., Kuipers E. M., Smit C., van der Strate B. W., Harmsen M. C., Meijer D. K. Lactoferrin. In Advances in Lactoferrin Research; Springer: Boston, MA, USA, 1998. P. 205–213.

55. Ibrahim H. R., Imazato K., Ono H. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration. J. Agric. Food Chem. 2011;59:10336–10345.

56. Behbahani M., Nosrati M., Mohabatkar H. Inhibition of human immunodeficiency type 1 virus (HIV-1) life cycle by different egg white lysozymes. Appl. Biochem. Biotechnol. 2018;185:786–798.

57. Ella E. E., Ahmad A. A., Umoh V. J., Ogala W. N., Balogun T. B., Musa A. Studies on the interaction between IgA, lactoferrin and lysozyme in the breastmilk of lactating women with sick and healthy babies. J. Infect. Dis. Immun. 2011;3:24–29.

58. Newburg D. S., Peterson J. A., Ruiz-Palacios G.M., Matson D. O., Morrow A. L., Shults J., de Lourdes Guerrero M., Chaturvedi P., Newburg S. O., Scallan C. D. et al. Role of human-milk lactadherin in protectoin against symptomatic rotavirus infection. Lancet. 1998;351:1160–1164.

59. He Y., Lawlor N. T., Newburg D. S. Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation. Adv. Nutr. 2016;7:102–111.

60. Yolken R. H., Peterson J. A., Vonderfecht S. L., Fouts E. T., Midthun K., Newburg D. S. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Investig. 1992;90:1984–1991.

61. Brenmoehl J., Ohde D., Wirthgen E., Hoeflich A. Cytokines in milk and the role of TGF-beta. Best Pract. Res. Clin. Endocrinol. Metab. 2018;32:47–56.

62. Field C. J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 2005;135:1–4.

63. Garofalo R. Cytokines in human milk. J. Pediatr. 2010:156: S 36–S 40.

64. Lee S. H. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intestinal Res. 2015;13:11–18.

65. Maheshwari A., Kelly D. R., Nicola T., Ambalavanan N., Jain S. K., Murphy–Ullrich J., Athar, M., Shimamura M., Bhandari V., Aprahamian C. et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology. 2011;140:242–253.

66. Siggers R. H., Siggers J., Boye, M., Thymann T., Mølbak, L., Leser T., Jensen B. B., Sangild P. T. Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J. Nutr. 2008;138:1437–1444.

67. Siggers R. H., Siggers J., Boye M., Thymann T., Mølbak L., Leser T., Jensen B. B., Sangild P. T. Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J. Nutr. 2008;138:1437–1444.


Рецензия

Для цитирования:


Грибакин С.Г., Орлова С.В., Подопригора И.В. Антивирусные свойства грудного молока: новая сфера исследований. Медицинский алфавит. 2023;(8):64-68. https://doi.org/10.33667/2078-5631-2023-8-64-68

For citation:


Gribakin S.G., Orlova S.V., Podoprigora I.V. Antiviral properties of breast milk: a new area of research. Medical alphabet. 2023;(8):64-68. (In Russ.) https://doi.org/10.33667/2078-5631-2023-8-64-68

Просмотров: 305


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)