

Роль омега ПНЖК в комплексной профилактике и лечении некоторых заболеваний кожи
https://doi.org/10.33667/2078-5631-2023-8-53-63
Аннотация
Растущее количество данных о питании показывает, что мы действительно «то, что мы едим», и содержание жирных кислот в нашем рационе имеет далеко идущие физиологические последствия, многие из которых мы только начинаем понимать. Разнообразие жирных кислот присутствует в рационе человека, в кровотоке человека, а также в клетках и тканях человека. Жирные кислоты являются источниками энергии и составляющими мембран. Они обладают биологической активностью, которая влияет на клеточный и тканевой метаболизм, функцию и реакцию, на гормональные и другие сигналы. Благодаря этим эффектам жирные кислоты влияют на здоровье, самочувствие и риски заболеваний. Хотя традиционно наибольший интерес к влиянию жирных кислот на здоровье связан с сердечнососудистыми заболеваниями, метаболическими заболеваниями, такими как диабет 2 типа, воспалительными заболеваниями, нарушениями репродуктивной и нейрокогнитивной функций человека, теперь очевидно, что жирные кислоты влияют и на ряд других заболеваний, в том числе заболеваний кожи, включая атопический дерматит, псориаз, розацеа, акне.
Об авторах
Е. В. ПрокопенкоРоссия
Прокопенко Елена Валерьевна, врач-эндокринолог, диетолог, ведущий менеджер проектов медицинского департамента
Москва
С. В. Орлова
Россия
Орлова Светлана Владимировна, д. м. н., проф., зав. кафедрой диетологии и клинической нутрициологии, главный научный сотрудник
Москва
Е. А. Никитина
Россия
Никитина Елена Александровна, к. м. н., доцент кафедры диетологии и клинической нутрициологии, научный сотрудник
Москва
А. Н. Водолазкая
Россия
Водолазкая Ангелина Николаевна, врач-диетолог
Москва
Н. В. Балашова
Россия
Балашова Наталья Валерьевна, к. б. н., ассистент доцент кафедры диетологии и клинической нутрициологии
Москва
Ю. А. Пигарева
Россия
Пигарева Юлия Анатольевна, к. м. н., зав. отделением клинической диетологии
Москва
Список литературы
1. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014 Dec;15(12):771–85. DOI: 10.1038/nrn3820
2. Abbott SK, Else PL, Atkins TA, Hulbert AJ. Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim. Biophys. Acta. 2012 May;1818(5):1309–17. DOI: 10.1016/j.bbamem.2012.01.011
3. Sakai C, Ishida M, Ohba H, Yamashita H, Uchida H, Yoshizumi M, Ishida T. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS One. 2017 Nov 9;12(11): e0187934. DOI: 10.1371/journal.pone.0187934
4. Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L, Scarano F, Nicita C, Coppoletta AR, Ruga S, Scicchitano M, Mollace R, Palma E, Mollace V. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines. 2020 Aug 25;8(9):306. DOI: 10.3390/biomedicines8090306
5. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015 Apr;1851(4):469–84. DOI: 10.1016/j.bbalip.2014.08.010
6. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans. 2017 Oct 15;45(5):1105–1115. DOI: 10.1042/BST20160474
7. Giacobbe J, Benoiton B, Zunszain P, Pariante CM, Borsini A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front Psychiatry. 2020 Feb 28;11:122. DOI: 10.3389/fpsyt.2020.00122
8. Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis. 2009 Aug;205(2):538–43. DOI: 10.1016/j.atherosclerosis.2008.12.013
9. Fontes JD, Rahman F, Lacey S, Larson MG, Vasan RS, Benjamin EJ, Harris WS, Robins SJ. Red blood cell fatty acids and biomarkers of inflammation: a cross-sectional study in a community-based cohort. Atherosclerosis. 2015 Jun;240(2):431–6. DOI: 10.1016/j.atherosclerosis.2015.03.043
10. Grenon SM, Conte MS, Nosova E, Alley H, Chong K, Harris WS, Vittinghoff E, Owens CD. Association between n-3 polyunsaturated fatty acid content of red blood cells and inflammatory biomarkers in patients with peripheral artery disease. J. Vasc. Surg. 2013 Nov;58(5):1283–90. DOI: 10.1016/j.jvs.2013.05.024
11. AbuMweis S, Jew S, Tayyem R, Agraib L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: a meta-analysis of randomised placebo-control human clinical trials. J. Hum. Nutr. Diet. 2018 Feb;31(1):67–84. DOI: 10.1111/jhn.12493
12. Lin N, Shi JJ, Li YM, Zhang XY, Chen Y, Calder PC, Tang LJ. What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2016 Aug 20;15:133. DOI: 10.1186/s12944–016–0303–7
13. O’Mahoney LL, Matu J, Price OJ, Birch KM, Ajjan RA, Farrar D, Tapp R, West DJ, Deighton K, Campbell MD. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc. Diabetol. 2018 Jul 7;17(1):98. DOI: 10.1186/s12933–018–0740-x
14. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 2001 May 18;276(20):16683–9. DOI: 10.1074/jbc.M011695200
15. Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR 4. J. Immunol. 2005 May 1;174(9):5390–7. DOI: 10.4049/jimmunol.174.9.5390
16. Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 2009 Oct 2;284(40):27384–92. DOI: 10.1074/jbc.M109.044065
17. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM. GPR 120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010 Sep 3;142(5):687–98. DOI: 10.1016/j.cell.2010.07.041
18. Im DS. FFA4 (GPR 120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol. Aspects Med. 2018 Dec;64:92–108. DOI: 10.1016/j.mam.2017.09.001
19. Fan R, Koehler K, Chung S. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms. Biochim Biophys Acta. Mol. Cell Biol. Lipids. 2019 Jan;1864(1):59–70. DOI: 10.1016/j.bbalip.2018.04.012
20. Brown LH, Mutch DM. Mechanisms underlying N 3-PUFA regulation of white adipose tissue endocrine function. Curr. Opin. Pharmacol. 2020 Jun;52:40–46. DOI: 10.1016/j.coph.2020.04.009
21. López-Vicario C, Rius B, Alcaraz-Quiles J, García-Alonso V, Lopategi A, Titos E, Clària J. Pro-resolving mediators produced from EPA and DHA: Overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases. Eur. J. Pharmacol. 2016 Aug 15;785:133–143. DOI: 10.1016/j.ejphar.2015.03.092
22. Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 2018 Jul 2;128(7):2657–2669. DOI: 10.1172/JCI97943
23. Serhan CN. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Aspects Med. 2017 Dec;58:1–11. DOI: 10.1016/j.mam.2017.03.001
24. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 2002 Oct 21;196(8):1025–37. DOI: 10.1084/jem.20020760
25. Ohira T, Arita M, Omori K, Recchiuti A, Van Dyke TE, Serhan CN. Resolvin E 1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem. 2010 Jan 29;285(5):3451–61. DOI: 10.1074/jbc.M109.044131
26. Hasturk H, Kantarci A, Ohira T, Arita M, Ebrahimi N, Chiang N, Petasis NA, Levy BD, Serhan CN, Van Dyke TE. RvE 1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB J. 2006 Feb;20(2):401–3. DOI: 10.1096/fj.05–4724fje
27. Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 2007 Apr;28(4):176–83. DOI: 10.1016/j.it.2007.02.007
28. Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011 Oct 12;111(10):5922–43. DOI: 10.1021/cr100396c
29. Weylandt KH, Chiu CY, Gomolka B, Waechter SF, Wiedenmann B. Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat. 2012 Mar;97(3–4):73–82. DOI: 10.1016/j.prostaglandins.2012.01.005
30. Sawada Y, Honda T, Nakamizo S, Otsuka A, Ogawa N, Kobayashi Y, Nakamura M, Kabashima K. Resolvin E 1 attenuates murine psoriatic dermatitis. Sci. Rep. 2018 Aug 8;8(1):11873. DOI: 10.1038/s41598–018–30373–1
31. Else PL, Hulbert AJ. Membranes as metabolic pacemakers. Clin. Exp. Pharmacol. Physiol. 2003 Aug;30(8):559–64. DOI: 10.1046/j.1440–1681.2003.03883.x
32. Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 2014 Mar;1841(3):422–34. DOI: 10.1016/j.bbalip.2013.08.011
33. Uchida Y, Hamanaka S: Stratum cormeum ceramides: Function, origins, and therapeutic implications. In: Skin Barrier, edited by PM Elias, KR Feingold. New York, Taylor and Francis, 2006, p. 43.
34. Bouwstra JA, Pilgrim K, Ponec M: Structure of the skin barrier. In: Skin Barrier, edited by PM Elias, KR Feingold. New York, Taylor and Francis, 2006, p. 65.
35. Marekov LN, Steinert PM. Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope. J. Biol. Chem. 1998 Jul 10;273(28):17763–70. DOI: 10.1074/jbc.273.28.17763
36. Swartzendruber DC, Wertz PW, Madison KC, Downing DT. Evidence that the corneocyte has a chemically bound lipid envelope. J. Invest. Dermatol. 1987 Jun;88(6):709–13. DOI: 10.1111/1523–1747.ep12470383
37. Wertz PW: Biochemistry of human stratum corneum lipids. In: Skin Barrier, edited by PM Elias, KR Feingold. New York, Taylor and Francis, 2006, pp. 33–42.
38. Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int J. Mol. Sci. 2020 Jan 23;21(3):741. DOI: 10.3390/ijms21030741
39. Feingold KR. The outer frontier: the importance of lipid metabolism in the skin. J. Lipid Res. 2009 Apr;50 Suppl(Suppl): S 417–22. DOI: 10.1194/jlr.R 800039-JLR 200
40. McCusker MM, Grant-Kels JM. Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin. Dermatol. 2010 Jul-Aug;28(4):440–51. DOI: 10.1016/j.clindermatol.2010.03.020
41. Harnack K, Andersen G, Somoza V. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids. Nutr. Metab. (Lond). 2009 Feb 19;6:8. DOI: 10.1186/1743–7075–6–8
42. Akiyama M. The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentiation. Biochim. Biophys. Acta. 2014 Mar;1841(3):435–40. DOI: 10.1016/j.bbalip.2013.08.009
43. Hovnanian A. Harlequin ichthyosis unmasked: a defect of lipid transport. J. Clin. Invest. 2005 Jul;115(7):1708–10. DOI: 10.1172/JCI25736
44. Proksch E, Elias PM, Feingold KR. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements. J. Clin. Invest. 1990 Mar;85(3):874–82. DOI: 10.1172/JCI114514
45. Schneider MR, Paus R. Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion. Int J. Biochem. Cell. Biol. 2010 Feb;42(2):181–5. DOI: 10.1016/j.biocel.2009.11.017
46. Fluhr JW, Mao-Qiang M, Brown BE, Wertz PW, Crumrine D, Sundberg JP, Feingold KR, Elias PM. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J. Invest. Dermatol. 2003 May;120(5):728–37. DOI: 10.1046/j.1523–1747.2003.12134.x
47. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J. Lipid. Res. 2008 Jan;49(1):4–11. DOI: 10.1194/jlr.R 700016-JLR 200
48. Mauro T. SC pH: measurement origins, and functions. In Skin Barrier. P. Elias, and K. Feingold. Taylor & Francis, New York2006: 223–229.
49. Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007 Apr;29(1):3– 14. DOI: 10.1007/s00281–007–0060–9
50. Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 2007 Apr;29(1):27–43. DOI: 10.1007/s00281–007–0064–5
51. Leung DY: New insights into the complex gene-environment interactions evolving into atopic dermatitis. J. Allergy. Clin. Immunol. 2006;118(1):37. DOI: 10.1016/j.jaci.2006.04.045
52. Elias PM, Feingold KR. Does the tail wag the dog? Role of the barrier in the pathogenesis of inflammatory dermatoses and therapeutic implications. Arch. Dermatol. 2001 Aug;137(8):1079–81. PMID: 11493102.
53. Proksch E, Jensen JM, Elias PM. Skin lipids and epidermal differentiation in atopic dermatitis. Clin. Dermatol. 2003 Mar-Apr;21(2):134–44. DOI: 10.1016/s0738–081x(02)00370-x
54. Proksch E, Fölster-Holst R, Jensen JM. Skin barrier function, epidermal proliferation and differentiation in eczema. J. Dermatol. Sci. 2006 Sep;43(3):159–69. DOI: 10.1016/j.jdermsci.2006.06.003
55. Proksch E, Fölster-Holst R, Bräutigam M, Sepehrmanesh M, Pfeiffer S, Jensen JM. Role of the epidermal barrier in atopic dermatitis. J. Dtsch. Dermatol. Ges. 2009 Oct;7(10):899–910. English, German. DOI: 10.1111/j.1610–0387.2009.07157.x
56. Burr GO, Burr MM. Nutrition classics from The Journal of Biological Chemistry 82:345–67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet. Nutr. Rev. 1973 Aug;31(8):248–9. DOI: 10.1111/j.1753–4887.1973.tb06008.x
57. Burr, G.O.; Burr, M. M. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 1930;86:587–621.
58. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, Cogen AL, Gallo RL. TLR 2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Invest. Dermatol. 2011 Mar;131(3):688–97. DOI: 10.1038/jid.2010.351
59. Deng Z, Chen M, Liu Y, Xu S, Ouyang Y, Shi W, Jian D, Wang B, Liu F, Li J, Shi Q, Peng Q, Sha K, Xiao W, Liu T, Zhang Y, Zhang H, Wang Q, Sun L, Xie H, Li J. A positive feedback loop between mTORC 1 and cathelicidin promotes skin inflammation in rosacea. EMBO Mol. Med. 2021 May 7;13(5): e13560. DOI: 10.15252/emmm.202013560
60. Gil A. Polyunsaturated fatty acids and inflammatory diseases. Biomed Pharmacother. 2002 Oct;56(8):388–96. DOI: 10.1016/s0753–3322(02)00256–1
61. Li G, Tang X, Zhang S, Deng Z, Wang B, Shi W, Xie H, Liu B, Li J. Aging-Conferred SIRT7 Decline Inhibits Rosacea-Like Skin Inflammation by Modulating Toll-Like Receptor 2-NF-κB Signaling. J. Invest. Dermatol. 2022 Oct;142(10):2580–2590.e6. DOI: 10.1016/j.jid.2022.03.026
62. Elias P. M., Feingold K. R., Fartasch M. The epidermal lamellar body as a multifunctional secretory organelle. In Skin Barrier; Elias, P.M., Feingold, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 281–292.
63. Mueller M, Lukas B, Novak J, Simoncini T, Genazzani AR, Jungbauer A. Oregano: a source for peroxisome proliferator-activated receptor gamma antagonists. J. Agric. Food. Chem. 2008 Dec 24;56(24):11621–30. DOI: 10.1021/jf802298w
64. Zhou XR, Sun CH, Liu JR, Zhao D. Dietary conjugated linoleic acid increases PPAR gamma gene expression in adipose tissue of obese rat, and improves insulin resistance. Growth Horm IGF Res. 2008 Oct;18(5):361–368. DOI: 10.1016/j.ghir.2008.01.001
65. Lima Ede A, Lima MM, Marques CD, Duarte AL, Pita Ida R, Pita MG. Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis. An Bras. Dermatol. 2013 Nov-Dec;88(6):1029–35. DOI: 10.1590/abd1806–4841.20132653
66. Ellis CN, Varani J, Fisher GJ, Zeigler ME, Pershadsingh HA, Benson SC, Chi Y, Kurtz TW. Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch. Dermatol. 2000 May;136(5):609–16. DOI: 10.1001/archderm.136.5.609
67. Hanley K, Kömüves LG, Bass NM, He SS, Jiang Y, Crumrine D, Appel R, Friedman M, Bettencourt J, Min K, Elias PM, Williams ML, Feingold KR. Fetal epidermal differentiation and barrier development In vivo is accelerated by nuclear hormone receptor activators. J. Invest. Dermatol. 1999 Nov;113(5):788–95. DOI: 10.1046/j.1523–1747.1999.00743.x
68. Bongartz T, Coras B, Vogt T, Schölmerich J, Müller-Ladner U. Treatment of active psoriatic arthritis with the PPARgamma ligand pioglitazone: an open-label pilot study. Rheumatology (Oxford). 2005 Jan;44(1):126–9. DOI: 10.1093/rheumatology/keh423
69. Foster RH, Hardy G, Alany RG. Borage oil in the treatment of atopic dermatitis. Nutrition. 2010 Jul-Aug;26(7–8):708–18. DOI: 10.1016/j.nut.2009.10.014
70. Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 2002 Jul;119(1):166–73. DOI: 10.1046/j.1523–1747.2002.01833.x
71. Fartasch M, Bassukas ID, Diepgen TL. Disturbed extruding mechanism of lamellar bodies in dry non-eczematous skin of atopics. Br. J. Dermatol. 1992 Sep;127(3):221–7. DOI: 10.1111/ j.1365–2133.1992.tb00118.x
72. Guttman-Yassky E, Krueger JG. Atopic dermatitis and psoriasis: two different immune diseases or one spectrum? Curr. Opin. Immunol. 2017 Oct;48:68–73. DOI: 10.1016/j.coi.2017.08.008
73. Ferreri C, Angelini F, Chatgilialoglu C, Dellonte S, Moschese V, Rossi P, Chini L. Trans fatty acids and atopic eczema/dermatitis syndrome: the relationship with a free radical cis-trans isomerization of membrane lipids. Lipids. 2005 Jul;40(7):661–7. DOI: 10.1007/s11745–005–1428–7
74. Kew S, Mesa MD, Tricon S, Buckley R, Minihane AM, Yaqoob P. Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on immune cell composition and function in healthy humans. Am J Clin Nutr. 2004 Apr;79(4):674–81. DOI: 10.1093/ajcn/79.4.674
75. Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar Drugs. 2018 Jul 30;16(8):256. DOI: 10.3390/md16080256
76. Honda T, Kabashima K. Prostanoids and leukotrienes in the pathophysiology of atopic dermatitis and psoriasis. Int Immunol. 2019 Aug 23;31(9):589–595. DOI: 10.1093/intimm/dxy087
77. Calder PC. Eicosanoids. Essays Biochem. 2020 Sep 23;64(3):423–441. DOI: 10.1042/EBC 20190083
78. Sergeant S, Rahbar E, Chilton FH. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016 Aug 15;785:77–86. DOI: 10.1016/j.ejphar.2016.04.020
79. Mir, M. Echium Oil: A Valuable Source of n-3 and n-6 Fatty Acids. OCL 2008;15:252–256. DOI: 10.1051/ocl.2008.0203
80. Koch C, Dölle S, Metzger M, Rasche C, Jungclas H, Rühl R, Renz H, Worm M. Docosahexaenoic acid (DHA) supplementation in atopic eczema: a randomized, double-blind, controlled trial. Br. J. Dermatol. 2008 Apr;158(4):786–92. DOI: 10.1111/j.1365–2133.2007.08430.x
81. Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, Mehta NN, Finlay AY, Gottlieb AB. Psoriasis. Nat. Rev. Dis. Primers. 2016 Nov 24;2:16082. DOI: 10.1038/nrdp.2016.82
82. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J. Invest. Dermatol. 2010 May;130(5):1373–83. DOI: 10.1038/jid.2009.399
83. Barrea L, Balato N, Di Somma C, Macchia PE, Napolitano M, Savanelli MC, Esposito K, Colao A, Savastano S. Nutrition and psoriasis: is there any association between the severity of the disease and adherence to the Mediterranean diet? J. Transl. Med. 2015 Jan 27;13:18. DOI: 10.1186/s12967–014–0372–1
84. Duarte GV, Follador I, Cavalheiro CM, Silva TS, Oliveira Mde F. Psoriasis and obesity: literature review and recommendations for management. An Bras. Dermatol. 2010 May-Jun;85(3):355–60. English, Portuguese. DOI: 10.1590/s0365–05962010000300009
85. Li SS, Liu Y, Li H, Wang LP, Xue LF, Yin GS, Wu XS. Identification of psoriasis vulgaris biomarkers in human plasma by non-targeted metabolomics based on UPLC-Q-TOF/MS. Eur. Rev. Med. Pharmacol Sci. 2019 May;23(9):3940–3950. DOI: 10.26355/eurrev_201905_17823
86. Namazi MR. Why is psoriasis uncommon in Africans? The influence of dietary factors on the expression of psoriasis. Int J. Dermatol. 2004 May;43(5):391–2. DOI: 10.1111/j.1365–4632.2004.02126.x
87. Horrobin DF. Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of eicosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EFA) metabolism or a combination of both? Med. Hypotheses. 1987 Apr;22(4):421–8. DOI: 10.1016/0306–9877(87)90037–5
88. Ricketts JR, Rothe MJ, Grant-Kels JM. Nutrition and psoriasis. Clin. Dermatol. 2010 NovDec;28(6):615–26. DOI: 10.1016/j.clindermatol.2010.03.027
89. Gupta AK, Ellis CN, Goldfarb MT, Hamilton TA, Voorhees JJ. The role of fish oil in psoriasis. A randomized, double-blind, placebo-controlled study to evaluate the effect of fish oil and topical corticosteroid therapy in psoriasis. Int J. Dermatol. 1990 Oct;29(8):591–5. DOI: 10.1111/j.1365–4362.1990.tb03477.x
90. Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm. 2005 Oct 24;2005(5):273–9. DOI: 10.1155/MI.2005.273
91. Upala S, Yong WC, Theparee T, Sanguankeo A. Effect of omega-3 fatty acids on disease severity in patients with psoriasis: A systematic review. Int J. Rheum. Dis. 2017 Apr;20(4):442–450. DOI: 10.1111/1756–185X.13051
92. Clark CCT, Taghizadeh M, Nahavandi M, Jafarnejad S. Efficacy of ω-3 supplementation in patients with psoriasis: a meta-analysis of randomized controlled trials. Clin. Rheumatol. 2019 Apr;38(4):977–988. DOI: 10.1007/s10067–019–04456-x
93. Allen BR. Fish oil in combination with other therapies in the treatment of psoriasis. World Rev. Nutr. Diet. 1991;66:436–45. DOI: 10.1159/000419312
94. Rossmeisl M, Jelenik T, Jilkova Z, Slamova K, Kus V, Hensler M, Medrikova D, Povysil C, Flachs P, Mohamed-Ali V, Bryhn M, Berge K, Holmeide AK, Kopecky J. Prevention and reversal of obesity and glucose intolerance in mice by DHA derivatives. Obesity (Silver Spring). 2009 May;17(5):1023–31. DOI: 10.1038/oby.2008.602
95. Dowlatshahi EA, van der Voort EA, Arends LR, Nijsten T. Markers of systemic inflammation in psoriasis: a systematic review and meta-analysis. Br. J. Dermatol. 2013 Aug;169(2):266–82. DOI: 10.1111/bjd.12355
96. Liu M, Li X, Chen XY, Xue F, Zheng J. Topical application of a linoleic acid-ceramide containing moisturizer exhibit therapeutic and preventive benefits for psoriasis vulgaris: a randomized controlled trial. Dermatol Ther. 2015 Nov-Dec;28(6):373–82. DOI: 10.1111/dth.12259.
97. Evidence suggests rosacea may be linked to Parkinson’s and Alzheimer’s disease. Nurs. Stand. 2016 May 25;30(39):14. DOI: 10.7748/ns.30.39.14.s16
98. Yuan X, Li J, Li Y, Deng Z, Zhou L, Long J, Tang Y, Zuo Z, Zhang Y, Xie H. Artemisinin, a potential option to inhibit inflammation and angiogenesis in rosacea. Biomed. Pharmacother. 2019 Sep;117:109181. DOI: 10.1016/j.biopha.2019.109181
99. Li J, Yuan X, Tang Y, Wang B, Deng Z, Huang Y, Liu F, Zhao Z, Zhang Y. Hydroxychloroquine is a novel therapeutic approach for rosacea. Int Immunopharmacol. 2020 Feb;79:106178. DOI: 10.1016/j.intimp.2019.106178
100. Wang L, Wang YJ, Hao D, Wen X, Du D, He G, Jiang X. The Theranostics Role of Mast Cells in the Pathophysiology of Rosacea. Front Med. (Lausanne). 2020 Jan 28;6:324. DOI: 10.3389/fmed.2019.00324
101. van den Elsen L, Garssen J, Willemsen L. Long chain N-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease. Curr Pharm Des. 2012;18(16):2375–92. DOI: 10.2174/138161212800165960
102. Nishi K, Kanayama Y, Kim IH, Nakata A, Nishiwaki H, Sugahara T. Docosahexaenoyl ethanolamide mitigates IgE-mediated allergic reactions by inhibiting mast cell degranulation and regulating allergy-related immune cells. Sci. Rep. 2019 Nov 7;9(1):16213. DOI: 10.1038/s41598–019–52317-z
103. Zeng Q, Yang J, Yan G, Zhang L, Wang P, Zhang H, Chen Q, Cao Y, Liu X, Wang X. Celastrol inhibits LL37-induced rosacea by inhibiting Ca2+/CaMKII-mTOR-NF-κB activation. Biomed. Pharmacother. 2022 Sep;153:113292. DOI: 10.1016/j.biopha.2022.113292
104. Yoon SH, Hwang I, Lee E, Cho HJ, Ryu JH, Kim TG, Yu JW. Antimicrobial Peptide LL-37 Drives Rosacea-Like Skin Inflammation in an NLRP3-Dependent Manner. J. Invest. Dermatol. 2021 Dec;141(12):2885–2894.e5. DOI: 10.1016/j.jid.2021.02.745
105. Bowe WP, Joshi SS, Shalita AR. Diet and acne. J. Am. Acad. Dermatol. 2010 Jul;63(1):124–41. DOI: 10.1016/j.jaad.2009.07.043
106. Tanghetti EA. The role of inflammation in the pathology of acne. J. Clin. Aesthet. Dermatol. 2013 Sep;6(9):27–35.
107. Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch. Dermatol. Res. 2019 Jul;311(5):337–349. DOI: 10.1007/s00403–019–01908-x
108. Gollnick HP. From new findings in acne pathogenesis to new approaches in treatment. J. Eur. Acad. Dermatol. Venereol. 2015 Jun;29 Suppl 5:1–7. DOI: 10.1111/jdv.13186.
109. Kircik LH. What’s new in the management of acne vulgaris. Cutis. 2019 Jul;104(1):48–52. PMID: 31487336.
110. Snodgrass RG, Huang S, Choi IW, Rutledge JC, Hwang DH. Inflammasome-mediated secretion of IL-1β in human monocytes through TLR 2 activation; modulation by dietary fatty acids. J. Immunol. 2013 Oct 15;191(8):4337–47. DOI: 10.4049/jimmunol.1300298
111. Li Y, Seifert MF, Ney DM, Grahn M, Grant AL, Allen KG, Watkins BA. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J. Bone. Miner. Res. 1999 Jul;14(7):1153–62. DOI: 10.1359/jbmr.1999.14.7.1153
112. Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin. Cosmet. Investig. Dermatol. 2015 Jul 15;8:371–88. DOI: 10.2147/CCID.S 69135
113. Sansone A, Tolika E, Louka M, Sunda V, Deplano S, Melchiorre M, Anagnostopoulos D, Chatgilialoglu C, Formisano C, Di Micco R, Faraone Mennella MR, Ferreri C. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles. PLoS One. 2016 Apr 5;11(4): e0152378. DOI: 10.1371/journal.pone.0152378
114. Scanferlato R, Bortolotti M, Sansone A, Chatgilialoglu C, Polito L, De Spirito M, Maulucci G, Bolognesi A, Ferreri C. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. Int J. Mol. Sci. 2019 Feb 15;20(4):832. DOI: 10.3390/ijms20040832.
115. Jung JY, Kwon HH, Hong JS, Yoon JY, Park MS, Jang MY, Suh DH. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial. Acta. Derm. Venereol. 2014 Sep;94(5):521–5. DOI: 10.2340/00015555–1802
116. Park KY, Ko EJ, Kim IS, Li K, Kim BJ, Seo SJ, Kim MN, Hong CK. The effect of evening primrose oil for the prevention of xerotic cheilitis in acne patients being treated with isotretinoin: a pilot study. Ann Dermatol. 2014 Dec;26(6):706–12. DOI: 10.5021/ad.2014.26.6.706
117. Krishna S, Okhovat JP, Kim J, Kim CN. Influence of ω-3 fatty acids on triglyceride levels in patients using isotretinoin. JAMA Dermatol. 2015 Jan;151(1):101–2. DOI: 10.1001/jamadermatol.2014.2402
118. Parmentier M., Mahmoud C. A.S., Linder M., Fanni J. Polar lipids: N-3 PUFA carriers for membranes and brain: Nutritional interest and emerging processes. Oléagineux Corps gras Lipides 2007;14:224–229. DOI: 10.1051/ocl.2007.0127
119. Hernandez E. M. 4-Specialty Oils: Functional and Nutraceutical Properties. In Functional Dietary Lipids: Food Formulation, Consumer Issues and Innovation for Health; Sanders, T., Ed.; Woodhead Publishing-Elsevier: Cambridge, UK, 2016; pp. 69–101.
120. Saini R. K., Shetty N. P., Giridhar P. GC-FID/MS Analysis of Fatty Acids in Indian Cultivars of Moringa oleifera: Potential Sources of PUFA. J. Am. Oil Chem. Soc. 2014;91:1029–1034.
121. Saini R. K., Shang X. M., Ko E. Y., Choi J. H., Kim D., Keum Y.-S. Characterization of nutritionally important phytoconstituents in minimally processed ready-to-eat baby-leaf vegetables using HPLC–DAD and GC–MS. J. Food Meas. Charact. 2016;10:341–349.
122. Harwood J. L. Algae: Critical sources of very long-chain polyunsaturated fatty acids. Biomolecules. 2019;9:708.
123. Prokopenko E. V., Orlova S. V., Nikitina E. A. Algae and omega 3 PUFAs. Medical alphabet. 2022;(16):93–101. DOI: 10.33667/2078–5631–2022–16–93–101
Рецензия
Для цитирования:
Прокопенко Е.В., Орлова С.В., Никитина Е.А., Водолазкая А.Н., Балашова Н.В., Пигарева Ю.А. Роль омега ПНЖК в комплексной профилактике и лечении некоторых заболеваний кожи. Медицинский алфавит. 2023;(8):53-63. https://doi.org/10.33667/2078-5631-2023-8-53-63
For citation:
Prokopenko E.V., Orlova S.V., Nikitina E.A., Vodolazkaya A.N., Balashova N.V., Pigareva Yu.A. The role of omega PUFAs in the complex prevention and treatment of certain skin diseases. Medical alphabet. 2023;(8):53-63. (In Russ.) https://doi.org/10.33667/2078-5631-2023-8-53-63