Preview

Медицинский алфавит

Расширенный поиск

Роль отдельных нейронутриентов в оптимизации алиментарной терапии неврологических пациентов

https://doi.org/10.33667/2078-5631-2023-8-36-47

Аннотация

Нейродиетология – мультидисциплинарная наука, основанная на знаниях нейронауки и диетологии и имеющая своей целью оптимизацию терапии психоневрологических заболеваний посредством качественного и количественного модулирования составом рационов питания, алиментарную профилактику болезней нервной системы, когда последняя возможна, а также оптимизацию психомоторных и интеллектуальных функций. Следует отметить, что нейродиетология и подходы к выбору лечебного питания с каждым годом занимают все более прочное положение в мировой клинической медицине. Вариабельность нутритивных подходов к практическому лечению неврологической патологии у пациентов отражает многогранность современной нейродиетологии. Поэтому не случайно нейродиетология детского возраста получила в России широкое применение, чего нельзя сказать о нутритивных подходах в лечении взрослых пациентов этого профиля. Кроме того, нарушения нутритивного статуса и отсутствие своевременной его коррекции снижают эффективность реабилитационных мероприятий – важнейшего звена в комплексном лечении неврологических пациентов, профилактике инвалидизации и повышении социальной адаптации. При невозможности обеспечить адекватный уровень потребления пищевых веществ и энергии стандартным путем необходимо своевременно назначить нутритивную поддержку с использованием специализированных пищевых продуктов, включая биологически активные добавки к пище.

Об авторах

С. В. Орлова
ФГАОУ ВО «Российский университет дружбы народов» (РУДН); ГБУЗ «Научно-практический центр детской психоневрологии Департамента здравоохранения Москвы»
Россия

Орлова Светлана Владимировна, д. м. н., проф., зав. кафедрой диетологии и клинической нутрициологии, главный научный сотрудник

Москва



Е. А. Никитина
ФГАОУ ВО «Российский университет дружбы народов» (РУДН); ГБУЗ «Научно-практический центр детской психоневрологии Департамента здравоохранения Москвы»
Россия

Никитина Елена Александровна, к. м. н., доцент кафедры диетологии и клинической нутрициологии научный сотрудник

Москва



Н. В. Балашова
ФГАОУ ВО «Российский университет дружбы народов» (РУДН)
Россия

Балашова Наталья Валерьевна, к. б. н., доцент кафедры диетологии и клинической нутрициологии

Москва



С. Г. Грибакин
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Грибакин Сергей Германович, д. м. н., профессор кафедры диетологии и нутрициологии

Москва



Е. В. Прокопенко
ООО «ИНВИТРО»
Россия

Прокопенко Елена Валерьевна, врач-эндокринолог, диетолог, ведущий менеджер проектов медицинского департамента

Москва



А. Н. Водолазкая
Австрийская клиника микронутриентной терапии Biogena
Россия

Водолазкая Ангелина Николаевна, врач-диетолог

Москва



Ю. А. Пигарева
ГБУЗ «Городская клиническая больница имени В. В. Виноградова Департамента здравоохранения Москвы»
Россия

Пигарева Юлия Анатольевна, к. м. н., зав. отделением клинической диетологии

Москва



Список литературы

1. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015 May 20;86(4):883–901. DOI: 10.1016/j.neuron.2015.03.035

2. Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow Metab. 2014 Aug;34(8):1270–82. Doi: 10.1038/jcbfm.2014.104

3. Studenikin V. M., Gribakin S. G. Shelkovsky V. I., Pak L. A. Neurodietology of childhood. – M., Dynasty, 2012. – 672 p.

4. Studenikin V. M. New in pediatric neurodietology. Attending Doctor. 2021; 9(24):6–8. DOI: 10.51793/OS.2021.24.9.001

5. Pyreva E. A., Sorvacheva T. N. Safronova A. N. Nutritional support in the treatment of children with neurological pathology. Issues of children’s dietology. – 2016. – T. 14(1). – From 47–52.

6. Magistretti P. J. Brain energy metabolism. In Fundamental neuroscience. Ed by. Squire L. R., Berg D., Bloom F. E., du Lac S., Ghosh A., Spitzer N. San Diego: Academic Press, 2008. P. 271–297.

7. Nogueira-de-Almeida CA, Zotarelli-Filho IJ, Nogueira-de-Almeida ME, Souza CG, Kemp VL, Ramos WS. Neuronutrients And Central Nervous System: A Systematic Review. Cent Nerv Syst Agents Med Chem. 2022 Nov 21. DOI: 10.2174/1871524923666221121123937

8. Jorgensen E. M. GABA. WormBook. 2005, vol. 31, pp. 1–13.

9. Spiering MJ. The discovery of GABA in the brain. J. Biol. Chem. 2018 Dec 7;293(49):19159–19160. DOI: 10.1074/jbc.CL118.006591

10. Roth FC, Draguhn A. GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012;2012:805830. DOI: 10.1155/2012/805830

11. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science. 1998 Nov 20;282(5393):1504–8. DOI: 10.1126/science.282.5393.1504

12. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex. 2000 Sep;10(9):899–909. DOI: 10.1093/cercor/10.9.899

13. Trigo FF, Chat M, Marty A. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum. J. Neurosci. 2007 Nov 14;27(46):12452–63. DOI: 10.1523/JNEUROSCI.3413–07.2007

14. Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, Barker JL. GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J. Neurosci. 1996 Mar 1;16(5):1808–18. DOI: 10.1523/JNEUROSCI.16–05–01808.1996

15. Owens DF, Kriegstein AR. Developmental neurotransmitters? Neuron. 2002 Dec 19;36(6):989–91. DOI: 10.1016/s0896–6273(02)01136–4

16. Represa A, Ben-Ari Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 2005 Jun;28(6):278–83. DOI: 10.1016/j.tins.2005.03.010

17. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science. 1995 Aug 18;269(5226):977–81. DOI: 10.1126/science.7638623

18. Wang J, Reichling DB, Kyrozis A, MacDermott AB. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur. J. Neurosci. 1994 Aug 1;6(8):1275–80. DOI: 10.1111/j.1460–9568.1994.tb00317.x

19. Obrietan K, van den Pol AN. GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing. J. Neurosci. 1995 Jul;15(7 Pt 1):5065–77. DOI: 10.1523/JNEUROSCI.15–07–05065.1995

20. van den Pol AN, Obrietan K, Chen G. Excitatory actions of GABA after neuronal trauma. J Neurosci. 1996 Jul 1;16(13):4283–92. DOI: 10.1523/JNEUROSCI.16–13–04283.1996

21. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015 Jan 17;11:165–75. DOI: 10.2147/NDT.S 58841

22. Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol. 2015 Oct 6;6:1520. DOI: 10.3389/fpsyg.2015.01520

23. Furuya S. An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac J. Clin. Nutr. 2008;17 Suppl 1:312–5. PMID: 18296366.

24. Nesterov S. V., Yaguzhinsky L. S., Podoprigora G. I., Nartsissov Y. R. Autocatalytic cycle in the pathogenesis of diabetes mellitus: biochemical and pathophysiological aspects of metabolic therapy with natural amino acids on the example of glycine. Diabetes mellitus. 2018;21(4):283–292.

25. Yalkowsky S. H. Handbook of aqueous solubility data / S. H. Yalkowsky, H. Yan. – CRC Press, 2003. – 581–582 p.

26. Yakovlev V. N. Normal Physiology: Self-study Modules students: Textbook – 5th ed., Revised. and additional / ed. Yakovlev. – Voronezh: IPF «XXI century», 2012. – 600 p.

27. Minaeva N. N., Litvintseva E. M. Laboratory work in organic chemistry. Khabarovsk: Publishing House of GBOU VPO FESMU, 2013. – 127 p.

28. Selivanova O. S., Napalkova S. M. Glycine as a cytoprotective agent in experimental gentamicin nephropathy. News of higher educational institutions. Volga region. Medical Sciences. 2007. – No. 1. – S. 76–82.

29. Cruz M, Maldonado-Bernal C, Mondragón-Gonzalez R, Sanchez-Barrera R, Wacher NH, Carvajal-Sandoval G, Kumate J. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes. J Endocrinol Invest. 2008 Aug;31(8):694–9. DOI: 10.1007/BF03346417

30. Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, Jahoor F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011 Jan;34(1):162–7. DOI: 10.2337/dc10–1006

31. Baeva E. S. Glycine and its role in the human body // Scientific forum: Medicine, biology and chemistry: Sat. Art. Based on materials of the XXII int. scientific-practical. conf. – No. 4(22). – M., Ed. «MTsNO», 2019. – S. 59–63.

32. Banderet LE, Lieberman HR. Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res Bull. 1989 Apr;22(4):759–62. DOI: 10.1016/0361–9230(89)90096–8

33. Клиническая генетика: учебник / Н. П. Бочков, В. П. Пузырев, С. А. Смирнихина; под ред. Н. П. Бочкова. – 4-е изд., доп. и перераб. – М.: ГЭОТАР-Медиа, 2011. – 592 с.

34. Holme E, Lindstedt S. Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione). J. Inherit. Metab. Dis. 1998 Aug;21(5):507–17. DOI: 10.1023/a:1005410820201

35. Semenov A. A. Fundamentals of chemistry of natural compounds: in 2 volumes / A. A. Semenov, V. G. Kartsev. – M.: ICSPF, 2009. – V. 1. – ISBN 978–5–903078–12–7; V. 2. – ISBN 978–5–903078–13–4.

36. Alekseev V. V. Medical laboratory technologies: a guide to clinical laboratory diagnostics: in 2 volumes / V. V. Alekseev and others; ed. A. I. Karpishchenko. – 3rd ed. revised and additional – M.: GEOTAR-Media, 2013. – V. 2. – 792 p. – ISBN 978–5–9704–2275–5 (Vol. 2).

37. Oslopov V. N. Case history of a therapeutic patient / V. N. Oslopov, O. V. Bogoyavlenskaya, Yu. V. Oslopov. – 2nd ed., Rev. and additional – M.: MEDpressinform, 2013. – 152 p. – ISBN 978–5–98322–967–9–27.

38. Ellaway CJ, Holme E, Standing S, Preece MA, Green A, Ploechl E, Ugarte M, Trefz FK, Leonard JV. Outcome of tyrosinaemia type III. J. Inherit Metab Dis. 2001 Dec;24(8):824–32. DOI: 10.1023/a:1013936107064

39. Wiedeman AM, Barr SI, Green TJ, Xu Z, Innis SM, Kitts DD. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients. 2018 Oct 16;10(10):1513. DOI: 10.3390/nu10101513

40. D’Orlando KJ, Sandage BW Jr. Citicoline (CDP-choline): mechanisms of action and effects in ischemic brain injury. Neurol Res. 1995 Aug;17(4):281–4. DOI: 10.1080/01616412.1995.11740327

41. Zempleni J., Suttie J. W., Gregory J. F. 3rd, Stover P. J. (eds.). Handbook of vitamins. CRC Press, 2013.

42. Li Q, Guo-Ross S, Lewis DV, Turner D, White AM, Wilson WA, Swartzwelder HS. Dietary prenatal choline supplementation alters postnatal hippocampal structure and function. J. Neurophysiol. 2004 Apr;91(4):1545–55. DOI: 10.1152/jn.00785.2003

43. Zeisel SH. A brief history of choline. Ann Nutr Metab. 2012;61(3):254–8. DOI: 10.1159/000343120

44. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006 Jan;20(1):43–9. DOI: 10.1096/fj.05–4707com

45. Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol. 2012 Mar;28(2):159–65. DOI: 10.1097/MOG.0b013e32834e7b4b

46. Inazu M. Functional Expression of Choline Transporters in the Blood-Brain Barrier. Nutrients. 2019 Sep 20;11(10):2265. DOI: 10.3390/nu11102265

47. Ueland PM. Choline and betaine in health and disease. J. Inherit Metab Dis. 2011 Feb;34(1):3–15. DOI: 10.1007/s10545–010–9088–4

48. Rand JB. Acetylcholine. WormBook. 2007 Jan 30:1–21. DOI: 10.1895/wormbook.1.131.1

49. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012 Oct 4;76(1):116–29. doi: 10.1016/j.neuron.2012.08.036

50. Chen J, Cheuk IWY, Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol. 2019 Dec;31:46–53. doi: 10.1016/j.suronc.2019.09.003.

51. Vogt N. Detecting acetylcholine. Nat Methods. 2018 Sep;15(9):648. DOI: 10.1038/s41592–018–0131-y

52. Gromova OA, Torshin IYu, Gusev EI. Sinergidnye nejroprotektornye effekty tiamina, piridoksina i tsianokobalamina v ramkakh proteoma cheloveka.Farmakokinetika i farmakodinamika. 2017;(1):40–51.

53. Bolaños-Burgos IC, Bernal-Correa AM, Mahecha GAB, Ribeiro ÂM, Kushmerick C. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. Cerebellum. 2021 Apr;20(2):186–202. Doi: 10.1007/s12311–020–01202-x

54. Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B 6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie. 2021 Apr;183:18–29. Doi: 10.1016/j.biochi.2020.12.025

55. Ramos RJ, Pras-Raves ML, Gerrits J, van der Ham M, Willemsen M, Prinsen H, Burgering B, Jans JJ, Verhoeven-Duif NM. Vitamin B 6 is essential for serine de novo biosynthesis. J. Inherit Metab Dis. 2017 Nov;40(6):883–891. DOI: 10.1007/s10545–017–0061–3.

56. Claus D, Neundörfer B, Warecka K. The influence of vitamin B 6 deficiency on somatosensory stimulus conduction in the rat. Eur. Arch Psychiatry Neurol Sci. 1984;234(2):102–5. DOI: 10.1007/BF00381215

57. Rezazadeh A, Oveisgharan S, Shahidi G, Naghdi R. A Case Report of Homocystinuria With Dystonia and Stroke. Child Neurol. Open. 2014 Aug 26;1(1):2329048X14545870. DOI: 10.1177/2329048X14545870

58. Nuru M, Muradashvili N, Kalani A, Lominadze D, Tyagi N. High methionine, low folate and low vitamin B 6/B 12 (HM–LF-LV) diet causes neurodegeneration and subsequent short-term memory loss. Metab Brain Dis. 2018 Dec;33(6):1923–1934. DOI: 10.1007/s11011–018–0298-z

59. Kirksey A, Morré DM, Wasynczuk AZ. Neuronal development in vitamin B 6 deficiency. Ann N Y Acad. Sci. 1990;585:202–18. DOI: 10.1111/j.1749–6632.1990.tb28054.x

60. Jung HY, Kim W, Hahn KR, Kang MS, Kim TH, Kwon HJ, Nam SM, Chung JY, Choi JH, Yoon YS, Kim DW, Yoo DY, Hwang IK. Pyridoxine Deficiency Exacerbates Neuronal Damage after Ischemia by Increasing Oxidative Stress and Reduces Proliferating Cells and Neuroblasts in the Gerbil Hippocampus. Int J. Mol. Sci. 2020 Aug 4;21(15):5551. DOI: 10.3390/ijms21155551

61. Akhmedzhanova L. T., Solokha O. A., Strokov I. A. B vitamins in the treatment of neurological diseases. RMJ 2009;17(11):776–83.

62. Eckert M, Schejbal P. Therapie von Neuropathien mit einer Vitamin-B-Kombination. Symptomatische Behandlung von schmerzhaften Erkrankungen des peripheren Nervensystems mit einem Kombinationspräparat aus Thiamin, Pyridoxin und Cyanocobalamin [Therapy of neuropathies with a vitamin B combination. Symptomatic treatment of painful diseases of the peripheral nervous system with a combination preparation of thiamine, pyridoxine and cyanocobalamin]. Fortschr Med. 1992 Oct 20;110(29):544–8.

63. Malouf R, Grimley Evans J. The effect of vitamin B 6 on cognition. Cochrane Database Syst Rev. 2003;(4): CD 004393. doi: 10.1002/14651858.CD004393

64. Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy – A Review. Nutrients. 2016 Jan 27;8(2):68. DOI: 10.3390/nu8020068

65. Field DT, Cracknell RO, Eastwood JR, Scarfe P, Williams CM, Zheng Y, Tavassoli T. High-dose Vitamin B 6 supplementation reduces anxiety and strengthens visual surround suppression. Hum Psychopharmacol. 2022 Nov;37(6): e2852. DOI: 10.1002/hup.2852

66. Dakshinamurti S., Dakshinamurti K. Vitamin b6. In: Zempleni J., Suttie J. W., Gregory J. F. III, Stover P. J., editors. Handbook of Vitamins. 5th ed. CRC Press; Boca Raton, FL, USA: 2013.

67. Turner RJ, Vink R. Magnesium in the central nervous system New Perspectives in Magnesium Research: Nutrition and Health. 338–355. DOI: 10.1007/978–1–84628–483–0_28

68. Touvier M, Lioret S, Vanrullen I, Boclé JC, Boutron-Ruault MC, Berta JL, Volatier JL. Vitamin and mineral inadequacy in the French population: estimation and application for the optimization of food fortification. Int J Vitam Nutr Res. 2006 Nov;76(6):343–51. DOI: 10.1024/0300–9831.76.6.343

69. Vink R. Magnesium in the CNS: recent advances and developments. Magnes Res. 2016 Mar 1;29(3):95–101. DOI: 10.1684/mrh.2016.0408

70. Yary T, Lehto SM, Tolmunen T, Tuomainen TP, Kauhanen J, Voutilainen S, Ruusunen A. Dietary magnesium intake and the incidence of depression: A 20-year follow-up study. J. Affect Disord. 2016 Mar 15;193:94–8. DOI: 10.1016/j.jad.2015.12.056

71. DiNicolantonio JJ, O’Keefe JH, Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018 Jan 13;5(1): e000668. doi: 10.1136/openhrt-2017–000668. Erratum in: Open Heart. 2018 Apr 5;5(1): e000668corr1.

72. Vink R, Nechifor M, editors. Magnesium in the Central Nervous System [Internet]. Adelaide (AU): University of Adelaide Press; 2011. PMID: 29919999. www.adelaide.edu.au/press.

73. Guerrera MP, Volpe SL, Mao JJ. Therapeutic uses of magnesium. Am Fam Physician. 2009 Jul 15;80(2):157–62.

74. Slutsky I, Sadeghpour S, Li B, Liu G. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron. 2004 Dec 2;44(5):835–49. DOI: 10.1016/j.neuron.2004.11.013

75. Zhou H, Liu G. Regulation of density of functional presynaptic terminals by local energy supply. Mol Brain. 2015 Jul 17;8:42. DOI: 10.1186/s13041–015–0132-z. Erratum in: Mol Brain. 2015;8:45.

76. Léveillé F, El Gaamouch F, Gouix E, Lecocq M, Lobner D, Nicole O, Buisson A. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J. 2008 Dec;22(12):4258–71. DOI: 10.1096/fj.08–107268

77. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010 Feb;47(2):122–9. DOI: 10.1016/j.ceca.2010.01.003

78. Chang JJ, Mack WJ, Saver JL, Sanossian N. Magnesium: potential roles in neurovascular disease. Front Neurol. 2014 Apr 15;5:52. DOI: 10.3389/fneur.2014.00052

79. Herroeder S, Schönherr ME, De Hert SG, Hollmann MW. Magnesium – essentials for anesthesiologists. Anesthesiology. 2011 Apr;114(4):971–93. DOI: 10.1097/ALN.0b013e318210483d

80. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010 Jan 28;65(2):165–77. DOI: 10.1016/j.neuron.2009.12.026

81. Sun Q, Weinger JG, Mao F, Liu G. Regulation of structural and functional synapse density by L-threonate through modulation of intraneuronal magnesium concentration. Neuropharmacology. 2016 Sep;108:426–39. DOI: 10.1016/j.neuropharm.2016.05.006

82. Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, Huang X, Xiong W, Ren C, Liu XG, Chui D, Liu G. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol. Brain. 2014 Sep 13;7:65. DOI: 10.1186/s13041–014–0065-y

83. Liu G, Weinger JG, Lu ZL, Xue F, Sadeghpour S. Efficacy and Safety of MMFS-01, a Synapse Density Enhancer, for Treating Cognitive Impairment in Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimers Dis. 2016;49(4):971–90. DOI: 10.3233/JAD-150538

84. Tarleton EK, Littenberg B, MacLean CD, Kennedy AG, Daley C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS One. 2017 Jun 27;12(6): e0180067. DOI: 10.1371/journal.pone.0180067

85. Tsapanou A, Vlachos GS, Cosentino S, Gu Y, Manly JJ, Brickman AM, Schupf N, Zimmerman ME, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Sakka P, Stern Y, Scarmeas N, Mayeux R. Sleep and subjective cognitive decline in cognitively healthy elderly: Results from two cohorts. J. Sleep Res. 2019 Oct;28(5): e12759. DOI: 10.1111/jsr.12759

86. Lin L, Jin C, Fu Z, Zhang B, Bin G, Wu S. Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks. Comput Methods Programs Biomed. 2016 Mar;125:8–17. DOI: 10.1016/j.cmpb.2015.11.012

87. Sale A, Berardi N, Maffei L. Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol. Rev. 2014 Jan;94(1):189–234. doi: 10.1152/physrev.00036.2012


Рецензия

Для цитирования:


Орлова С.В., Никитина Е.А., Балашова Н.В., Грибакин С.Г., Прокопенко Е.В., Водолазкая А.Н., Пигарева Ю.А. Роль отдельных нейронутриентов в оптимизации алиментарной терапии неврологических пациентов. Медицинский алфавит. 2023;(8):36-47. https://doi.org/10.33667/2078-5631-2023-8-36-47

For citation:


Orlova S.V., Nikitina E.A., Balashova N.V., Gribakin S.G., Prokopenko E.V., Vodolazkaya A.N., Pigareva Yu.A. The role of individual neuronutrients in optimizing nutritional therapy for neurological patients. Medical alphabet. 2023;(8):36-47. (In Russ.) https://doi.org/10.33667/2078-5631-2023-8-36-47

Просмотров: 403


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)