Preview

Medical alphabet

Advanced search

Herbal remedies as a way to treat benign pathology of the mammary gland

https://doi.org/10.33667/2078-5631-2022-24-31-37

Abstract

Violations of neuroendocrine homeostasis under stressful conditions against the background of increased estrogen presence in tissues can become a stimulus for the development of benign breast pathology, both in the form of pain syndrome – cyclic mastalgia, less often non-cyclic mastalgia, and in the form of benign breast dysplasia (DMDM), one of symptoms of which can also be mastalgia. The diagnosis and treatment of benign breast pathology has been the responsibility of a gynecologist since 2009. This is correct, the pathogenetic commonality of pain syndromes and diseases associated with abnormal proliferation is obvious in gynecological practice. The goal of treating mastalgia is to improve the quality of life of the patient, but if mastalgia has a morphological substrate in the form of DMDM, then in addition to pain relief. It is necessary to provide for curbing the progression of the disease to reduce the risk of developing breast cancer. Hormonal treatment has limited possibilities here and the search for therapeutic concepts is usually carried out in the direction of therapy with plant-derived molecules that can influence the metabolism of estrogens in tissues. In addition to this lever of influence on the abnormal proliferation processes abnormal proliferation in the mammary gland, there are other targets involved in the pathophysiology of abnormal proliferation and pain in the mammary gland, in particular, oxidative stress, the immune system, etc. In this regard, molecules with pleiotropic biological effects are of interest, such as resveratrol, simultaneously exhibiting the properties of phytoestrogen, antioxidant, insulin sensitizer, etc. The combination of resveratrol and indole-3-carbinol for the treatment of cyclic mastalgia and DMDM seems to be an attractive option for improving the quality of life and preventing malignant neoplasms.

About the Author

I. V. Kuznetsova
Medical Corporation ‘RHANA’
Russian Federation

Kuznetsova Irina V., DM Sci (habil.), professor

Moscow



References

1. Kaprin A. D., Rozhkova N. I. Mammology: a national guide. M.: GEOTAR-Media, 2016; 311 p.

2. Kerchelaeva S. B., Smetnik A. A., Bespalov V. G. Mastopathy and prevention of breast cancer as an interdisciplinary problem. BC. Mother and child. 2016;(15):1018–1025.

3. Weaver M., Stuckey A. Benign Breast Disorders. Obstet. Gynecol. Clin. North. Am. 2022; 49(1): 57–72. doi: 10.1016/j.ogc.2021.11.003

4. Kataria K., Dhar A., Srivastava A., Kumar S., Goyal A. A systematic review of current understanding and management of mastalgia. Indian. J. Surg. 2014;76(3):217–222. doi: 10.1007/s12262–013–0813–8

5. Rozhkova N. I., Zikiryakhodzhaev A. D., Burdina I. I., Ermoshchenkova M. V., Zapirova S. P., Mazo M. L. et al. Benign diseases of the mammary gland. Moscow: GEOTAR-Media. 2018; 272.

6. Dyrstad S. W., Yan Y., Fowler A. M., Colditz G. A. Breast cancer risk associated with benign breast disease: systematic review and meta-analysis. Breast. Cancer. Res. Treat. 2015;149(3):569–575. doi: 10.1007/s10549–014–3254–6

7. Houghton S. C., Hankinson S. E. Cancer Progress and Priorities: Breast Cancer. Cancer Epidemiol Biomarkers Prev. 2021;30(5):822–844. doi: 10.1158/1055–9965.EPI-20–1193

8. Schepotin I. B., Zotov A. S., Lyubota R. V., Anikusko N. F., Lyubota I. I. The main mechanisms of the influence of the metabolic syndrome on the risk of occurrence and prognosis of the course of breast cancer (literature review). Tumors of the female reproductive system. 2013;1–2:45–51

9. Liu H., Shi S., Gao J., Guo J., Li M., Wang L. Analysis of risk factors associated with breast cancer in women: a systematic review and meta-analysis. Transl. Cancer. Res. 2022;11(5):1344–1353. doi: 10.21037/tcr-22–193

10. Toktaş O., Elasan S., İliklerden Ü. H., Erten R., Karayil A. R., Özdemir A. et al. Relationship Between Proliferative Breast Lesions and Breast Cancer Risk Factors. Eur. J. Breast. Health. 2020;17(1):15–20. doi: 10.4274/ejbh.2020.5713

11. Salamat F., Niakan B., Keshtkar A., Rafiei E., Zendehdel M. Subtypes of Benign Breast Disease as a Risk Factor of Breast Cancer: A Systematic Review and Meta Analyses. Iran. J. Med. Sci. 2018;43(4):355–364.

12. Labazanova P. G., Budanova M. V., Burdina I. I., Zapirova S. B., Mazo M. L., Mikushin S. Yu. et al. Mammographic density is a marker of an increased risk of developing breast cancer. Medical Alphabet. 2021;19:41–48.

13. Kontos D., Winham S. J., Oustimov A., Pantalone L., Hsieh M. K., Gastounioti A. et al. Radiomic Phenotypes of Mammographic Parenchymal Complexity: Toward Augmenting Breast Density in Breast Cancer Risk Assessment. Radiology. 2019;290(1):41–49. doi: 10.1148/radiol.2018180179

14. Lisanti M. P., Tsirigos A., Pavlides S., Reeves K. J., Peiris-Pagès M., Chadwick A. L. et al. JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: connecting fibrosis, inflammation, and stemness for cancer prevention. Cell. Cycle. 2014;13(4):580–599. doi: 10.4161/cc.27379

15. Ziegler R. G. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;99(PtA):67–75. doi: 10.1016/j.steroids.2015.02.015

16. Katz V. L., Dotters D. Breast Diseases: Diagnosis and Treatment of Benign and Malignant Disease. In: Katz VL, Lentz GM, Lobo RA, Gershenson DM, Eds., Comprehensive Gynecology, 6th Edition, Elsevier Mosby, Philadelphia: 2012

17. Ashrafyan L. A., Babaeva N. A., Antonova I. B., Alyoshikova O. I., and Gerfanova E. V., Russ. The value of estrogen metabolites in the carcinogenesis of tumors of the female reproductive system. Medical opponent. 2019;3(7): 34–39.

18. Zheng R., Wang J., Wu Q., Wang Z., Ou Y., Ma L. et al. Expression of ALDH1 and TGFβ2 in benign and malignant breast tumors and their prognostic implications. Int. J. Clin. Exp. Pathol. 2014;7(7):4173–4183.

19. Ilango S., Paital B., Jayachandran P., Padma P. R., Nirmaladevi R. Epigenetic alterations in cancer. Front. Biosci. (Landmark Ed). 2020;25(6):1058–1109. doi: 10.2741/4847

20. Spitzwieser M., Holzweber E., Pfeiler G., Hacker S., Cichna-Markl M. Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer. Breast. Cancer. Res. 2015;17(1):125. doi: 10.1186/s13058–015–0637–5

21. Jin W., Li Q. Z., Liu Y., Zuo Y. C. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics. 2020;112(1):853–858. doi: 10.1016/j.ygeno.2019.05.026

22. Pandima Devi K., Rajavel T., Daglia M., Nabavi S. F., Bishayee A., Nabavi S. M. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin. Cancer. Biol. 2017;46:146–157. doi: 10.1016/j.semcancer.2017.02.001

23. Minning C., Mokhtar N. M., Abdullah N., Muhammad R., Emran N. A., Ali S. A. et al. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses. Int. J. Oncol. 2014;45(5):1959–1968. doi: 10.3892/ijo.2014.2625

24. Kleffel S., Schatton T. Tumor dormancy and cancer stem cells: two sides of the same coin? Adv. Exp. Med. Biol. 2013;734:145–179. doi: 10.1007/978–1–4614–1445–2_8

25. Recasens A., Munoz L. Targeting Cancer Cell Dormancy. Trends. Pharmacol. Sci. 2019;40(2):128–141. doi: 10.1016/j.tips.2018.12.004

26. Wong C. P., Hsu A., Buchanan A., Palomera-Sanchez Z., Beaver L. M., Houseman E. A. et al. Effects of sulforaphane and 3,3’-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS One. 2014;9(1): e86787. doi: 10.1371/journal.pone.0086787

27. Tijhuis A. E., Johnson S. C., McClelland S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 2019;12:17. doi: 10.1186/s13039–019–0429–1

28. Sotnikova L. S., Golubyatnikova E. V. To the question of the effectiveness of therapy for benign pathology of the mammary glands. effective pharmacotherapy. 2016; 4(31)12–21.

29. Thompson P. A., Khatami M., Baglole C. J., Sun J., Harris S. A., Moon E. Y. et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36(Suppl 1): S 232–253. doi: 10.1093/carcin/bgv038

30. Rozhkova N. I., Podzolkova N. M., Ovsyannikova T. V. On the role of prolactin in the genesis of breast diseases. Status Praesens. 2016;4(33):1–9.

31. Salzano S., Checconi, Hanschmann E. M., Lillig C. H., Bowler L. D., Chan P. et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. U S A. 2014;111(33):12157–12162. doi: 10.1073/pnas.1401712111

32. Pokul L. V., Chugunova N. A. Oxidative stress in the genesis of benign changes in the mammary glands and the possibility of its correction. Doctor.Ru 2016;3(120):18–24.

33. Rozhkova N. I., Burdina I. I., Zapirova S. B., Mazo M. L., Prokopenko S. P., Jacobs O. E. Timely treatment of diffuse hyperplasia – prevention of breast cancer. Oncogynecology. 2016; 1:4–11.

34. Bespalov V. G., Travina M. L. Fibrocystic disease and the risk of breast cancer. Tumors of the female reproductive system. 2015;11(4):58–70.

35. Gynecological endocrinology / ed. Serova V. N., Prilepskaya V. N., Ovsyannikova T. V. Moscow: MEDpress-inform. 2017; 337–382.

36. Suturina L. V., Popova L. N. Dynamics of clinical symptoms and correction of antioxidant deficiency in women with diffuse mastopathy using the herbal preparation mastodinon. Obstetrics and Gynecology. 2012;8:56–59.

37. Romagnolo D. F., Daniels K. D., Grunwald J. T., Ramos S. A., Propper C. R., Selmin O. I. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol. Nutr. Food. Res. 2016;60(6):1310–1329. doi: 10.1002/mnfr.201501063

38. Vysotskaya I. V., Letyagin V. P., Kim E. A., Levkina N. V. Practical recommendations for drug correction of diffuse dishormonal dysplasia of the mammary glands. Tumors of the female reproductive system. 2014;2:45–52.

39. Vysotskaya I. V., Letyagin V. P., Kim E. A., Pogodina E. M., Kirsanov V. Yu., Levkina N. V. Breast cancer: from pathogenesis to prevention. Oncogynecology. 2018;4(28):31–38.

40. Khiyaeva V. A. Experience in the use of indolecarbinol in mastopathy. Medical Council. 2019;13:154–158.

41. Wang T. T.Y., Pham Q., Kim Y. S. Elucidating the Role of CD 84 and AHR in Modulation of LPS-Induced Cytokines Production by Cruciferous Vegetable-Derived Compounds Indole-3-Carbinol and 3,3’-Diindolylmethane. Int. J. Mol. Sci. 2018;19(2):339. doi: 10.3390/ijms19020339

42. Williams D. E. Indoles Derived from Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3’-Diindolylmethane. Front. Nutr. 2021;8:734334. doi: 10.3389/fnut.2021.734334

43. Ashrafyan L. A., Babaeva N. A., Antonova I. B., Ovchinnikova O. A., Aleshikova O. I., Motskobili T.A., Kuznetsov I. N. The level of balance of estrogen metabolites in breast cancer and ways of its correction. Tumors of the female reproductive system. 2015;11(3):22–29. doi: 10.17650/1994–4098–2015–11–3–22–29.

44. Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front. Nutr. 2020;7:111. doi: 10.3389/fnut.2020.00111

45. Fuentes F., Paredes-Gonzalez X., Kong A. N. Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3’-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and in vivo Cancer Chemopreventive Efficacy. Curr. Pharmacol. Rep. 2015;1(3):179–196. doi: 10.1007/s40495–015–0017-y

46. Caruso J. A., Campana R., Wei C., Su C. H., Hanks A. M., Bornmann W. G., Keyomarsi K. Indole-3-carbinol and its N-alkoxy derivatives preferentially target ERα-positive breast cancer cells. Cell. Cycle. 2014;13(16):2587–2599. doi: 10.4161/15384101.2015.942210

47. Maruthanila V. L., Poornima J., Mirunalini S. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3’-Diindolylmethane: A Therapeutic Marvel. Adv. Pharmacol. Sci. 2014;2014 832161. doi: 10.1155/2014/832161

48. Smetnik A. A., Smetnik V. P., Kiselev V. I. Experience in the use of indole-3-carbinol in the treatment of breast diseases and the prevention of breast cancer. Obstetrics and Gynecology. 2017;2:106–112.

49. Semov A., Iourtchenco L., Liu L. F., Li S., Xu Y., Su X. et al. Diindolilmethane (DIM) selectively inhibits cancer stem cells. Biochem. Biophys. Res. Commun. 2012;424(1) 45–51. doi: 10.1016/j.bbrc.2012.06.062

50. Meng T., Xiao D., Muhammed A., Deng J., Chen L., He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules. 2021;26(1):229. doi: 10.3390/molecules26010229

51. Hasan M., Bae H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules. 2017;22(2):294. doi: 10.3390/molecules22020294

52. Meng Q., Guo T., Li G., Sun S., He S., Cheng B. et al. Dietary resveratrol improves antioxidant status of sows and piglets and regulates antioxidant gene expression in placenta by Keap1-Nrf2 pathway and Sirt1. J. Anim. Sci. Biotechnol. 2018;9:34. doi: 10.1186/s40104–018–0248-y

53. Nunes S., Danesi F., Del Rio D., Silva P. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr. Res. Rev. 2018;31(1):85–97. doi: 10.1017/S095442241700021X

54. Ramírez-Garza S.L., Laveriano-Santos E.P., Marhuenda-Muñoz M., Storniolo C. E., Tresserra-Rimbau A., Vallverdú-Queralt A., Lamuela-Raventós R. M. Health Effects of Resveratrol: Results from Human Intervention Trials. Nutrients. 2018;10(12):1892. doi: 10.3390/nu10121892

55. Kukreja A., Wadhwa N., Tiwari A. Therapeutic role of resveratrol and piceatannol in disease prevention. Blood Disord. Transfus. 2014;5:9. doi: 10.4172/2155–9864.1000240

56. Maleki Dana P., Sadoughi F., Mansournia M. A., Mirzaei H., Asemi Z., Yousefi B. Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology. 202122(5):479–494. doi: 10.1007/s10522–021–09934-x

57. Novakovic R, Rajkovic J, Gostimirovic M, Gojkovic-Bukarica L, Radunovic N. Resveratrol and Reproductive Health. Life (Basel). 2022; 12(2): 294. doi: 10.3390/life12020294

58. Zhu W., Qin W., Zhang K., Rottinghaus G. E., Chen Y. C., Kliethermes B., Sauter E. R. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr. Cancer. 201264(3):393–400. doi: 10.1080/01635581.2012.654926

59. Davinelli S., Scapagnini G., Marzatico F., Nobile V., Ferrara N., Corbi G. Influence of equol and resveratrol supplementation on health-related quality of life in menopausal women: A randomized, placebo-controlled study. Maturitas. 2017;96:77–83. doi: 10.1016/j.maturitas.2016.11.016

60. Wong R. H., Evans H. M., Howe P. R.C. Resveratrol supplementation reduces pain experience by postmenopausal women. Menopause. 2017;24(8):916–922. doi: 10.1097/GME.0000000000000861

61. Takeda M., Takehana S., Sekiguchi K., Kubota Y., Shimazu Y. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol. Int. J. Mol. Sci. 2016;17(10):1702. doi: 10.3390/ijms17101702

62. Pan W., Yu H., Huang S., Zhu P. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK. PLoS One. 2016;11(1): e0147034. doi: 10.1371/journal.pone.0147034

63. de Sá Coutinho D., Pacheco M. T., Frozza R. L., Bernardi A. Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int. J. Mol. Sci. 2018;19(6):1812. doi: 10.3390/ijms19061812

64. Fuggetta M. P., Bordignon V., Cottarelli A., Macchi B., Frezza C., Cordiali-Fei P. et al. Downregulation of proinflammatory cytokines in HTLV‑1-infected T cells by Resveratrol. J. Exp. Clin. Cancer. Res. 2016;35(1):118. doi: 10.1186/s13046–016–0398–8

65. Ren Z., Wang L., Cui J., Huoc Z., Xue J., Cui H. et al. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie. 2013;68(8):689–694. PMID: 24020126

66. Magrone T., Magrone M., Russo M. A., Jirillo E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants (Basel). 2019;9(1):35. doi: 10.3390/antiox9010035

67. Turner R. S., Thomas R. G., Craft S., van Dyck C. H., Mintzer J., Reynolds B. A. et al. Alzheimer’s Disease Cooperative Study. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015; 85(16): 1383–1391. doi: 10.1212/WNL.0000000000002035.

68. Moussa C., Hebron M., Huang X., Ahn J., Rissman R. A., Aisen P. S., Turner R. S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation. 2017;14(1):1. doi: 10.1186/s12974–016–0779–0

69. He S., Chen L., He Y., Chen F., Ma Y., Xiao D., He J. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, barrier integrity and inflammation in yellow-feather broilers. Anim. Prod. Sci. 2020;60:1547. doi: 10.1071/AN 19218

70. Bräunlich M., Slimestad R., Wangensteen H., Brede C., Malterud K. E., Barsett H. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients. 2013;5(3):663–678. doi: 10.3390/nu5030663

71. Xia N., Daiber A., Förstermann U., Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017174(12):1633–1646. doi: 10.1111/bph.13492

72. Yiu E. M., Tai G., Peverill R. E., Lee K. J., Croft K. D., Mori T. A. et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 2015;262(5):1344–53. doi: 10.1007/s00415–015–7719–2

73. Chhabra G., Singh C. K., Amiri D., Akula N., Ahmad N. Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules. 2021;26(5):1343. doi: 10.3390/molecules26051343

74. Talib W. H., Alsayed A. R., Farhan F., Al Kury L. T. Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets. Molecules. 2020;25(18):4282. doi: 10.3390/molecules25184282

75. Hogg S. J., Chitcholtan K., Hassan W., Sykes P. H., Garrill A. Resveratrol, Acetyl-Resveratrol, and Polydatin Exhibit Antigrowth Activity against 3D Cell Aggregates of the SKOV-3 and OVCAR-8 Ovarian Cancer Cell Lines. Obstet. Gynecol. Int. 2015;2015:279591. doi: 10.1155/2015/279591

76. Liu Y., Tong L., Luo Y., Li X., Chen G., Wang Y. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J. Cell. Biochem. 2018;119(7):6162–6172. doi: 10.1002/jcb.26822

77. Li W., Ma J., Ma Q., Li B., Han L., Liu J. et al. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr. Med. Chem. 2013;20(33):4185–4194. doi: 10.2174/09298673113209990251

78. Nguyen M., Osipo C. Targeting Breast Cancer Stem Cells Using Naturally Occurring Phytoestrogens. Int J. Mol. Sci. 2022;23(12):6813. doi: 10.3390/ijms23126813.

79. Wu H., Chen L., Zhu F., Han X., Sun L., Chen K. The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells. Toxins. (Basel). 2019;11(12):731. doi: 10.3390/toxins11120731

80. Castillo-Pichardo L., Cubano L. A., Dharmawardhane S. Dietary grape polyphenol resveratrol increases mammary tumor growth and metastasis in immunocompromised mice. BMC Complement. Altern. Med. 2013;13:6. doi: 10.1186/1472–6882–13–6

81. Zhu W., Qin W., Zhang K., Rottinghaus G. E., Chen Y. C., Kliethermes B.., Sauter ER. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr. Cancer. 2012;64(3):393–400. doi: 10.1080/01635581.2012.654926

82. Alamolhodaei N. S., Tsatsakis A. M., Ramezani M., Hayes A. W., Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food. Chem. Toxicol. 2017;103:223–232. doi: 10.1016/j.fct.2017.03.024


Review

For citations:


Kuznetsova I.V. Herbal remedies as a way to treat benign pathology of the mammary gland. Medical alphabet. 2022;(24):31-37. (In Russ.) https://doi.org/10.33667/2078-5631-2022-24-31-37

Views: 571


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)