Preview

Medical alphabet

Advanced search

New international technical standard on interpretive strategies for lung function tests (Part 1)

https://doi.org/10.33667/2078-5631-2022-20-16-22

Abstract

An overview of the new 2022 European Respiratory Society and American Thoracic Society technical standard on interpretive strategies for routine lung function tests: spirometry, body plethysmography and diffusing capacity is presented. The fi rst part discusses general issues, the choice of reference equations, defining normal range of parameters and bronchodilator response estimation.

About the Author

M. Yu. Kameneva
Pavlov First Saint Petersburg State Medical University
Russian Federation

Marina Yurevna Kameneva, MD, PhD, DSc (Med.), Leading researcher, Research Institute of rheumatology and allergology, Scientific and clinical research center



References

1. Pellegrino R., Viegi G., Brusasco V., Crapo R. O., Burgos F., Casaburi R., Coates A., Van der Grinten C. P.M., Gustafsson P., Hankinson J., Jensen R., Johnson D. C., MacIntyre N., McKay R., Miller M. R., Navajas D., Pedersen O. F., Wangeret J. Interpretative strategies for lung function tests. Eur. Respir. J. 2005; 25: 948–968. https://doi.org/10.1183/09031936.05.00035205

2. Topalovic M., Laval S., Aerts J.-M., Troosters T., Decramer M. · Janssens W. Automated interpretation of pulmonary function tests in adults with respiratory complaints. Respiration. 2017; 93: 170–178. https://doi.org/10.1159/000454956

3. Kameneva M.Yu., Tishkov A.V., Trofi mov V.I. Unresolved issues of diagnosis of restrictive ventilation disorders. Pulmonologiya. 2015; 25(3): 363-367. (in Russ.) https://doi.org/10.18093/0869-0189-2015-25-3-363-367

4. Stanojevic S., Kaminsky D. A., Miller M., Thompson B., Aliverti A., Barjaktarevic I., Cooper B. G., Culver B., Derom E., Hall G. L., Hallstrand T. S., Leuppi J. D., MacIntyre N., McCormack M., Rosenfeld M., Swenson E. R. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022 ; 60 (1): 2101499. https://doi.org/10.1183/13993003.01499–2021

5. Quanjer P. H., Stanojevic S., Cole T. J., Baur X., Hall G. L., Culver B. H., Enrigh P. L., Hankinson J. L., Ip M. S.M., Zheng J., Stocks J. and the ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 2012; 40(10): 1324–1343. https://doi.org/10.1183/09031936.00080312

6. Langhammer A., Johannessen A., Holmen T. L., Melbye H., Stanojevic S., Lund M. B., Melsom M. N., Bakke P., Quanjer P. H. Global Lung Function Initiative 2012 reference equations for spirometry in the Norwegian population. Eur. Respir. J. 2016; 48: 1602–1611. https://doi.org/10.1183/13993003.00443–2016

7. Busi L. E., Sly P. D. Validation of the GLI-2012 spirometry reference equations in Argentinian children. Pediatr. Pulmonol. 2018; 53: 204–208. https://doi.org/10.1002/ppul.23923

8. Hall G. L., Thompson B. R., Stanojevic S., Abramson M. J., Beasley R., Coates A., Dent A., Eckert B., James A., Filsell S., Musk A. W., Nolan G., Dixon B., O’Dea C., Savage J., Stocks J., Swanney M. P. The Global Lung Initiative 2012 reference values refl ect contemporary Australasian spirometry. Respirology. 2012; 17: 1150–1151. https://doi.org/10.1111/j.1440–1843.2012.02232.x

9. Quanjer P. H., Kubota M., Kobayashi H., Omori H., Tatsumi K., Kanazawa M., Stanojevic S., Stocks J., Cole T. J. Secular changes in relative leg length confound height-based spirometric reference values. Chest. 2015; 147: 792–797. https://doi.org/10.1378/chest.14–1365

10. Smith S. J., Gray D. M., MacGinty R.P., Hall G. L., Stanojevic S., Mphahlele R., Masekela R. Choosing the Better Global Lung Initiative 2012 Equation in South African Population Groups. Am. J. Respir. Crit. Care Med. 2020; 202: 1724–1727. https://doi.org/10.1164/rccm.202005–2085LE

11. Sonnappa S., Lum S., Kirkby J., Bonner R., Wade A., Subramanya V., Lakshman P. T., Rajan B., Nooyi S. C., Stocks J. Disparities in pulmonary function in healthy children across the Indian urban-rural continuum. Am. J. Respir. Crit. Care Med. 2015; 191: 79–86. https://doi.org/10.1164/ rccm.201406–1049OC

12. Stanojevic S., Graham B. L., Cooper B. G., Bruce R., Thompson B. R., Carter K. W., Francis R. W., Graham L., Hall G. L. on behalf of the Global Lung Function Initiative TLCO working group. Offi cial ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur. Respir. J. 2017; 50: 1700010. https://doi.org/10.1183/13993003.00010–2017

13. Hall G. L., Filipow N., Ruppel G., Okitika T., Thompson B., Kirkby J., Steenbruggen I., Cooper B. G., Stanojevic S. on behalf of the contributing GLI Network members. Official ERS technical standard: Global Lung Function Initiative reference values for static lung volumes in individuals of European ancestry. Eur. Respir. J. 2021; 57: 2000289. https://doi.org/10.1183/13993003.00289–2020

14. Jones R. L., Nzekwu M. M. The effects of body mass index on lung volumes. Chest. 2006; 130: 827–833. https://doi.org/10.1378/chest.130.3.827

15. Littleton SW, Tulaimat A. The effects of obesity on lung volumes and oxygenation. Respir Med 2017; 124: 15–20. https://doi.org/10.1016/j.rmed.2017.01.004

16. Winck A. D., Heinzmann- Filho J.P., Soares R. B., da Silva J. S., Woszezenki C. T., Zanatta L. B. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review. Rev. Paul. Pediatr. 2016; 34: 510–517. https://doi.org/10.1016/j.rpped.2016.02.008

17. Saliman J. A., Benditt J. O., Flum D. R., Oelschlager B. K., Dellinger E. P., Goss C. H. Pulmonary function in the morbidly obese. Surg. Obes. Relat. Dis. 2008; 4: 632–639. https://doi.org/10.1016/j.soard.2008.06.010

18. Tan E. K., Tan E. L. Alterations in physiology and anatomy during pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2013; 27: 791–802. https://doi.org/10.1016/j.bpobgyn.2013.08.001

19. McAuliffe F, Kametas N., Costello J., Rafferty G. F., Greenough A., Nicolaides K. Respiratory function in singleton and twin pregnancy. B. J. O. G. 2002; 109: 765–769. https://doi.org/10.1111/j.1471–0528.2002.01515.x

20. Graham B. L., Brusasco V., Burgos F., Cooper B. G., Jensen R., Kendrick A., MacIntyre N.R., Thompson B. R., Wanger J. 2017 ERS/ATS Standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49: 1600016. https://doi.org/10.1183/13993003.00016–2016

21. Hankinson J. L., Odencratz J. R., Fedan K. B. Spirometric reference values from a sample of the general US population. Am. J. Respir. Crit. Care Med. 1999; 159: 179–187. https://doi.org/10.1164/ajrccm.159.1.9712108

22. Huprikar N. A., Holley A. B., Skabelund A. J., Hayes J. A., Hiles P. D., Aden J. K., Morris M. J., Hersh A. M. A Comparison of Global Lung Initiative 2012 with Third National Health and Nutrition Examination Survey Spirometry Reference Values. Implications in Defining Obstruction. Annals of the American Thoracic Society. 2019; 16: 225–230. https://doi.org/10.1513/AnnalsATS.201805–317OC

23. Miller M. R., Thinggaard M., Christensen K., Pedersen O. F., Sigsgaard T. Best lung function equations for the very elderly selected by survival analysis. Eur. Respir. J. 2014; 43: 1338–1346. https://doi.org/10.1183/09031936.00100313

24. Linares-Perdomo O., Hegewald M., Collingridge D. S., Blagev D., Jensen R. L., Hankinson J., Morris A. H. Comparison of NHANES III and ERS/GLI 12 for airway obstruction classifi cation and severity. Eur. Respir. J. 2016; 48: 133–141. https://doi.org/10.1183/13993003.01711–2015

25. Quanjer P. H., Tammeling G. J., Cotes J. E., Pedersen O. F., Peslin R., Yernault J.-C. Lung volumes and forced ventilatory fl ows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Offi cial Statement of the European Respiratory Society. Eur. Respir. J. 1993; 6: (16): 5–40. https://doi.org/10.1183/09041950.005s1693

26. Quanjer P. H., Brazzale D. J., Boros P. W., Pretto J. J. Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur. Respir. J. 2013; 42: 1046–1054. https://doi.org/10.1183/09031936.00195512

27. Hulo S., de Broucker V., Giovannelli J., Cherot-Kornobis N., Neve V., Sobaszek A., Dauchet L., Edme J. L. Global Lung Function Initiative reference equations better describe a middle aged, healthy French population than the European Community for Steel and Coal values. Eur. Respir. J. 2016; 48: 1779–1781. https://doi.org/10.1183/13993003.00606–2016

28. Klement R.F., Lavrushin A.A., Ter-Pogasyan P.A., Kotegov Yu.M. Users instructions of main spirometry indexes predicted values formulas and tables. Leningrad, 1986. 79 p. (in Russ.).

29. Kameneva M.Yu., Tishkov A.V., Byhova A.V., Pokhaznikova M.A., Trophimov V.I. Сonsistency analysis of some reference systems in the interpretation of spirometry. Russian family doctor. 2012; 16(2): 23–28. (in Russ.).

30. Struchkov P.V., Kiryukhina .D., Drozdov D.V., Shchelykalina S.P., Manichev I.A. Different predicted values — different conclusions? Medical alphabet. 2021; (15): 22-26. (in Russ.) https://doi.org/10.33667/2078-5631-2021-15-22-26

31. Quanjer P. H., Stanojevic S. Do the Global Lung Function Initiative 2012 equations fit my population? Eur. Respir. J. 2016; 48: 1782–1785. https://doi.org/10.1183/13993003.01757–2016

32. Manual of clinical respiratory physiology. Shik L.L., Kanaev N.N., editors. Moscow: Meditsina, 1980. 376 p. (in Russ.).

33. Swanney M. P., Ruppel G., Enright P. L., Pedersen O. F., Crapo R. O., Miller M. R., Jensen R. L., Falaschetti E., Schouten J. P., Hankinson J. L., Stocks J., Quanjer P. H. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassifi cation of airway obstruction. Thorax. 2008; 63: 1046–1051. https://doi.org/10.1136/thx.2008.098483

34. Miller M. R., Quanjer P. H., Swanney M. P., Ruppel G., Enright P. L. Interpreting lung function data using 80 % predicted and fixed thresholds misclassifi es more than 20 % of patients. Chest. 2011; 139: 52–59. https://doi.org/10.1378/chest.10–0189

35. Chhabra S. K. Acute bronchodilator response has limited value in differentiating bronchial asthma from COPD. J. Asthma. 2005; 42(5): 367–372. https://doi.org/10.1081/JAS-62992

36. Quanjer P. H., Ruppel G. L., Langhammer A., Krishna A., Mertens F., Johannessen A., Menezes A. M.B., Wehrmeister F. C., Perez-Padilla R., Swanney M. P., Tan W. C., Bourbeau J. Bronchodilator response in FVC is larger and morrelevant than in FEV1 in severe airflow obstruction. Chest. 2017; 151(5): 1088–1098. https://doi.org/10.1016/j.chest.2016.12.017

37. Barjaktarevic I., Kaner R., Buhr R. G., Cooper C. B. Bronchodilator responsiveness or reversibility in asthma and COPD — a need for clarity. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 3511–3513. https://doi.org/10.2147/COPD.S183736

38. Barjaktarevic I. Z., Buhr R. G., Wang X., Hu S., Couper D., Anderson W., Kanner R. E., Paine Iii R., Bhatt S. P., Bhakta N. R., Arjomandi M., Kaner R. J., Pirozzi C. S., Curtis J. L., O’Neal W.K., Woodruff P. G., Han M. K., Martinez F. J., Hansel N., Wells J. M., Ortega V. E., Hoffman EA, Doerschuk C. M., Kim V., Dransfi eld M. T., Drummond M. B., Bowler R., Criner G., Christenson S. A., Ronish B., Peters S. P., Krishnan J. A., Tashkin D. P., Cooper C. B. Clinical signifi cance of bronchodilator responsiveness evaluated by forced vital capacity in COPD: SPIROMICS cohort analysis. Int. J. Chron. Obstruc.t Pulmon. Dis. 2019; 14: 2927–2938. https://doi.org/10.2147/COPD.S220164.eCollection2019

39. Ward H., Cooper B. G., Miller M. R. Improved criterion for assessing lung function reversibility. Chest. 2015; 148(4): 877–886. https://doi.org/10.1378/chest.14–2413

40. Tan W. C., Vollmer W. M., Lamprecht B., Mannino D. M., Jithoo A., Nizankowska-Mogilnicka E., Mejza F., Gislason T., Burney P. G., Buist A. S., Group BCR. Worldwide patterns of bronchodilator responsiveness: results from the Burden of Obstructive Lung Disease study. Thorax. 2012; 67(8): 718–726. https://doi.org/10.1136/thoraxjnl-2011–201445

41. Burity E. F., Pereira C. A., Jones M. H., Sayao L. B., Andrade A. D., Britto M. C. Bronchodilator response cut-off points and FEV0.75 reference values for spirometry in preschoolers. J. Bras. Pneumol. 2016; 42(5): 326–332. https://doi.org/10.1590/S1806–37562015000000216

42. Chen C., Jian W., Gao Y., Xie Y., Song Y., Zheng J. Early COPD patients with lung hyperinfl ation associated with poorer lung function but better bronchodilator responsiveness. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 2519–2526. https://doi.org/10.2147/COPD.S110021

43. Lee J. S., Huh J. W., Chae E. J., Seo J. B., Ra S. W., Lee J. H., Kim E. K., Lee Y. K., Kim T. H., Kim W. J., Lee J. H., Lee S. M., Lee S., Lim S. Y., Shin T. R., Yoon H. I., Sheen S. S., Oh Y. M., Lee S. D. Response patterns to bronchodilator and quantitative computed tomography in chronic obstructive pulmonary disease. Clin. Physiol. Funct. Imaging 2012; 32: 12–18. https://doi.org/10.1111/j.1475–097X.2011.01046.x

44. Graham B. L., Steenbruggen I., Miller M. R., Barjaktarevic I. Z., Cooper B. G., Hall G. L., Hallstrand T. S., Kaminsky D. A., McCarthy K., McCormack M.C., Oropez C. E., Rosenfeld M., Stanojevic S., Swanney M. P., Thompson B. R. on behalf of the American Thoracic Society and the European Respiratory Society. Standardization of spirometry 2019. Update an official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019; 200(8): e70-e88. DOI: 10.1164/rccm.201908–1590ST

45. Aysanov Z.R., Kameneva M.Yu., Chernyak A.V., Perelman J.M., Prikhodko A.G., Chushkin M.I., Kalmanova E.N., Avdeev S.N., Belevskiy A.S., Chikina S.Yu., Kravchenko N.Yu. Spirometry. Guidelines of Russian Respiratory Respiratory Society. Moscow, 2021 (in Russ.) URL: https://spulmo.ru/upload/spirometriya_16_12_2021_extEd.pdf?t=1


Review

For citations:


Kameneva M.Yu. New international technical standard on interpretive strategies for lung function tests (Part 1). Medical alphabet. 2022;(20):16-22. (In Russ.) https://doi.org/10.33667/2078-5631-2022-20-16-22

Views: 1002


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)