Preview

Medical alphabet

Advanced search

Asynchronies during respiratory support

https://doi.org/10.33667/2078-5631-2022-17-50-61

Abstract

   Asynchronies (desynchronies, dyssynchrony) is a disturbance of the harmonious interaction between the patient’s respiratory system and а ventilator. Asynchronies occur as a result of various reasons and with any form of respiratory support (non-invasive, assisted or fully controlled mechanical ventilation). Asynchrony is a significant cause of biomechanics and gas exchange disorders in the development of both self-injury and ventilator-induced lung injury, an increase of the respiratory support duration and mortality in patients with respiratory failure. Understanding the mechanisms of the asynchrony pathogenesis and assessment of the patient’s respiratory system condition make it possible to timely identify and resolve disturbance of the patient-ventilator interactions. The article presents a classification, the main causes of development, diagnostic and correction methods of different variants of desynchronies in patients with respiratory disorders during of respiratory support.

About the Authors

A. G. Koryakin
City Clinical Hospital n. a. S. P. Botkin; Russian Medical Academy for Continuing Professional Education
Russian Federation

Albert G. Koryakin,  intern in Intensive

Care Unit

Moscow



A. V. Vlasenko
City Clinical Hospital n. a. S. P. Botkin; Russian Medical Academy for Continuing Professional Education
Russian Federation

Alexey V. Vlasenko, DM Sci (habil.), Laureate of the Prize of the Government of
the Russian Federation in the field of science and technology, head of Unit

Intensive Care Unit

Moscow



E. P. Rodionov
City Clinical Hospital n. a. S. P. Botkin; Russian Medical Academy for Continuing Professional Education
Russian Federation

Evgeny P. Rodionov, PhD Med, deputy chief physician for anesthesiology and
resuscitation

Moscow



E. A. Evdokimov
Russian Medical Academy for Continuing Professional Education
Russian Federation

Evgeny A. Evdokimov, DM Sci (habil.), professor, Honored Doctor of the Russian
Federation, head of Dept;  adviser to the rector 

Dept of Anesthesiology and Emergency Medicine 

Moscow



References

1. Власенко А. В. Роль ауто-ПДКВ в оптимизации респираторного паттерна при остром паренхиматозном поражении легких / А. В. Власенко [и др.] // Анестезиология и реаниматология. – 2002. – № 6. – С. 25–31. / Vlasenko A. V., Ostapchenko D. V., Galushka S. V., Mitrokhin A., Zhitkovsky K. A. The role of auto-PEEP in optimizing the respiratory pattern in acute parenchymal lung injury. Anesthesiology and Resuscitation. 2002. No. 6. P. 25–31.

2. Корякин А. Г. Прикладные аспекты респираторной биомеханики (современное состояние проблемы) / А. Г. Корякин [и др.] // Медицинский алфавит. – 2022. – № 9. – С. 56–68. / Koryakin A. G., Vlasenko A. V., Evdokimov E. A., Rodionov E. P. Applied aspects of respiratory biomechanics (current state of the problem). Medical Alphabet. 2022. No. 9. P. 56–68.

3. Респираторная поддержка пациентов в критическом состоянии : Национальное руководство для врачей / под редакцией Е. А. Евдокимова, А. В. Власенко, С. Н. Авдеева. – Москва: ГЭОТАР-Медиа, 2021. – 448 с. / Respiratory support for critically ill patients. National guide for doctors edited by E. A. Evdokimov, A. V. Vlasenko, S. N. Avdeev. Moscow: GEOTAR-Media, 2021. 448 p.

4. Полупан А. А. Асинхронии и графика ИВЛ / А. А. Полупан, А. С. Горячев, И. А. Савин. – Москва: Аксиом Графикс Юнион, 2018. – 368 с. / Polupan A. A., Goryachev A. S., Savin I. A. Asynchrony and ventilator graphics. Moscow: Axiom Graphics Union, 2018. 368 p.

5. Akoumianaki E., Lyazidi A., Rey N., et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013. Vol. 143, No. 4. Р. 927–38.

6. Arnal J. M., Garnero A., Novonti D., et al. Feasibility study on full closed-loop control ventilation (IntelliVent-ASV™) in ICU patients with acute respiratory failure: a prospective observational comparative study. Crit Care. 2013. Vol. 17 No. 5: R 196.

7. Arnal J. M., Garnero A., Novotni D., et al. Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes.Minerva Anestesiol. 2018. Vol. 84, No. 1. Р. 5–67.

8. Baedorf Kassis E., Su H. K., Graham A. R., et al. Reverse Trigger Phenotypes in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2021. Vol. 203, No. 1. Р. 67–77.

9. Bialais E., Wittebole X., Vignaux L., et al. Closed-loop ventilation mode (IntelliVent ® -ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016. Vol. 82, No. 6. Р. 657–68.

10. Blanch L., Bernabé F., Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005. Vol 50, No. 1. Р. 110–23.

11. Blanch L., Villagra A., Sales B., et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015. Vol. 41, No. 4. Р. 633–41.

12. Branson R. D., Blakeman T. C., Robinson B. R. Asynchrony and dyspnea. Respir Care.2013. Vol. 58, No. 6. Р. 973–89.

13. Caramez M. P., Borges J. B., Tucci M. R., et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005. Vol. 33, No. 7. Р. 1519–28.

14. Carteaux G., Lyazidi A., Cordoba-Izquierdo A., et al. Patient-ventilator asynchrony during noninvasive ventilation: a bench and clinical study.Chest. 2012. Vol. 142, No. 2. Р. 367–76.

15. Carteaux G., Parfait M., Combet M., et al. Patient-Self Inflicted Lung Injury: A Practical Review. J Clin Med. 2021. Vol. 10 No. 12. 2738.

16. Chanques G., Kress J. P., Pohlman A., et al. Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med. 2013. Vol. 41, No. 9. P. 2177–87.

17. Chao D. C., Scheinhorn D. J., Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation.Chest. 1997. Vol. 112, No. 6. Р. 1592–9.

18. Chatburn R. L. Handbook of Respiratory Care, 3 rd ed. Chatburn R. L., Mireles-Cabodevila E. Jones & Bartlett Learning, 2011. 274 p.

19. Chiumello D., Polli F., Tallarini F., et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med. 2007. Vol. 35, No. 11. Р. 2547–52.

20. De Oliveira B., Aljaberi N., Taha A., et al. Patient – Ventilator Dyssynchrony in Critically Ill Patients. J. Clin. Med. 2021. Vol. 10, No. 19. 4550.

21. Dhand R. Ventilator graphics and respiratory mechanics in the patient with obstructive lung disease. Respir Care. 2005. Vol. 50, No. 2. Р. 246–61.

22. Gentile M. A. Cycling of the Mechanical Ventilator Breath. Respir Care. 2011. Vol. 56, No. 1. Р. 52–60.

23. Goligher E. C., Fan E., Herridge M. S., et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am J Respir Crit Care Med. 2015. Vol. 192, No. 9. Р. 1080–8.

24. Hill L. L., Pearl R. G. Flow triggering, pressure triggering, and autotriggering during mechanical ventilation.Crit Care Med. 2000. Vol. 28, No. 2. Р. 579–81.

25. Imanaka H., Nishimura M., Takeuchi M., et al. Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med. 2000. Vol. 28, No. 2. Р. 402–7.

26. Jolliet P., Tassaux D. Clinical review: patient-ventilator interaction in chronic obstructive pulmonary disease.Crit Care. 2006. Vol. 10, No. 6. 236.

27. Lamouret O., Crognier L., Vardon Bounes F., et al. Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation: patient-ventilator interaction during invasive ventilation delivered by tracheostomy. Crit Care. 2019. Vol. 23, No. 1. 2.

28. Lessard M. R. Expiratory muscle activity increases intrinsic positive end- expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995. Vol. 151, No 21. P. 562–69.

29. Liao K. M., Ou C. Y., Chen C. W. Classifying different types of double triggering based on airway pressure and flow deflection in mechanically ventilated patients. Respir Care. 2011. Vol. 56, No. 4. Р. 460–6.

30. Liu L., Yu Y., Xu X., et al. Automatic Adjustment of the Inspiratory Trigger and Cycling-Off Criteria Improved Patient-Ventilator Asynchrony During Pressure Support Ventilation. Front Med (Lausanne). 2021. Vol. 8. 752508.

31. MacIntyre N. R., Cheng K. C., McConnell R. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest. 1997. Vol. 111, No. 1. Р. 188–93.

32. Marini J. J., Capps J. S., Culver B. H. The inspiratory work of breathing during assisted mechanical ventilation. Chest. 1985. Vol. 87, No. 5. Р. 612–8.

33. Marini J. J. Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med. 2011. Vol. 184, No. 7. Р. 756–62.

34. Mellado Artigas R., Damiani L. F., Piraino T., et al. Reverse Triggering Dyssynchrony 24 h after Initiation of Mechanical Ventilation. Anesthesiology. 2021. Vol. 134, No. 5. Р. 760–9.

35. Mellott K. G., Grap M. J., Munro C. L., et al. Patient ventilator asynchrony in critically ill adults: frequency and types. Heart Lung. 2014. Vol. 43, No. 3. Р. 231–43.

36. Mughal M. M., Culver D. A., et al. Auto-positive end-expiratory pressure: mechanisms and treatment. Cleve Clin J Med. 2005. Vol. 72, No. 9. Р. 801–9.

37. Neuschwander A., Chhor V., Yavchitz A., et al. Automated weaning from mechanical ventilation: Results of a Bayesian network meta-analysis. J Crit Care. 2021. Vol 61. P. 191–8.

38. Nilsestuen J. O. Hargett K. D. Using Ventilator Graphics to Identify Patient-Ventilator Asynchrony. Respir Care. 2005. Vol. 50, No. 2. Р. 202–234.

39. Pepe P. E., Marini J. J. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis. 1982. Vol. 126, No. 1. Р. 166–70.

40. Pham T., Telias I., Piraino T., et al. Asynchrony Consequences and Management. Crit Care Clin. 2018. Vol. 34, No. 3. Р. 325–41.

41. Pierson D. J. Patient – ventilator interaction. Respir Care. 2011. Vol. 56, No. 2. Р. 214–228.

42. Pohlman M. C., McCallister K. E., Schweickert W. D., et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med. 2008. Vol. 36, No. 11. Р. 3019–23.

43. Prinianakis G., Kondili E., Georgopoulos D. Patient-ventilator interaction: an overview. Respir Care Clin N Am. 2005. Vol. 11, No. 2. Р. 201–24.

44. Ranieri V. M., Giuliani R., Cinnella G., et al. Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis. 1993. Vol. 147, No. 1. Р. 5–13.

45. Rodriguez P. O., Tiribelli N., Fredes S., et al. Prevalence of Reverse Triggering in Early ARDS: Results from a Multicenter Observational Study. Chest. 2021. Vol. 159, No. 1. Р. 186–195.

46. Shehabi Y., Bellomo R., Reade M. C., et al. Sedation Practice in Intensive Care Evaluation (SPICE) Study Investigators; ANZICS Clinical Trials Group. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med. 2012. Vol. 186 No. 8. Р. 724–31.

47. Sottile P. D., Albers D., Higgins C., et al. The Association Between Ventilator Dyssynchrony, Delivered Tidal Volume, and Sedation Using a Novel Automated Ventilator Dyssynchrony Detection Algorithm. Crit Care Med. 2018. Vol. 46, No. 2. e151–e157.

48. Tassaux D., Gainnier M., Battisti A., Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005. Vol. 172, No. 10. Р. 1283–9.

49. Telias I., Beitler J. R. Reverse Triggering, the Rhythm Dyssynchrony: Potential Implications for Lung and Diaphragm Protection. Am J Respir Crit Care Med. 2021. Vol. 203, No. 1. Р. 5–6.

50. Thille A. W., Rodriguez P., Cabello B., et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006. Vol. 32, No. 10. Р. 1515–22.

51. Thille A. W., Cabello B., Galia F., et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008. Vol. 34, No. 8. Р. 1477–86.

52. Тokioka H., Tanaka T., Ishizu T., et al. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001. Vol. 92, No. 1. Р. 161–5.

53. Vaporidi K., Babalis D., Chytas A., et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017. Vol. 43, No. 2. Р. 184–91.

54. de Wit M., Miller K. B., Green D. A., et al. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009. Vol. 37, No. 10. Р. 2740–5.

55. de Wit M., Pedram S., Best A. M., Epstein S. K. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009. Vol. 24, No. 1. Р. 74–80.

56. Yoshida T., Uchiyama A., Matsuura N., et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012. Vol. 40, No. 5. Р. 1578–85.

57. Yoshida T., Torsani V., Gomes S., et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013. Vol. 188, No. 12. Р. 1420–7.

58. Yoshida T., Roldan R., Beraldo M. A., et al. Spontaneous Effort During Mechanical Ventilation: Maximal Injury with Less Positive End-Expiratory Pressure. Crit Care Med. 2016. Vol. 8. e678–88.


Review

For citations:


Koryakin A.G., Vlasenko A.V., Rodionov E.P., Evdokimov E.A. Asynchronies during respiratory support. Medical alphabet. 2022;(17):50-61. (In Russ.) https://doi.org/10.33667/2078-5631-2022-17-50-61

Views: 307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)