Противоопухолевые препараты и лекарственно-индуцированная артериальная гипертензия
https://doi.org/10.33667/2078-5631-2022-17-30-41
Аннотация
Артериальная гипертензия (АГ) представляет собой одну из самых часто встречаемых коморбидностей у пациентов с онкологическими заболеваниями. Помимо этого, само лечение противоопухолевыми препаратами может приводить к развитию лекарственно-индуцированной (ЛИ) АГ.
Цель работы: систематизация и анализ данных научной литературы о противоопухолевых лекарственных средствах (ЛС), применение которых может вызвать развитие ЛИ АГ, а также об эпидемиологии, патофизиологических механизмах, факторах риска, клинической картине, диагностике и дифференциальной диагностике, лечении и профилактике АГ, ассоциированной с применением противоопухолевых ЛС.
В результате анализа данных установлено, что ЛС, используемые для лечения онкологических заболеваний, нередко способствуют развитию ЛИ АГ. Механизмы, которые обусловливают развитие АГ, разнообразны и могут включать развитие эндотелиальной дисфункции (нарушению баланса между вазоконстрикторами и вазодилататорами), увеличение жесткости артериального русла, рарефикацию капилляров, нарушение водно-электролитного баланса, а также генетические факторы. АГ, в том числе индуцированная противоопухолевыми ЛС – важный фактор развития сердечно-сосудистых событий, включая инсульт, ишемическую болезнь сердца, сердечную недостаточности. Для снижения риска развития нежелательных реакций, и предотвращения сердечно- сосудистых событий важно знать и помнить о ЛС, которые могут вызвать ЛИ АГ. Лечение АГ, возникшей на фоне приема противоопухолевых ЛС, часто требует незамедлительной отмены ЛС, так нередко нежелательные реакции имеют жизнеугрожающий характер. В некоторых ситуациях возможно снижение дозы ЛС и (или) назначение антигипертензивных ЛС.
Об авторах
О. Д. ОстроумоваРоссия
Ольга Дмитриевна Остроумова, д. м. н., проф., зав. кафедрой, проф. кафедры
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
кафедра терапии и полиморбидной патологии им. академика М. С. Вовси
ФГАОУ ВО «Первый Московский государственный медицинский университет имени И. М. Сеченова»
кафедра клинической фармакологии и пропедевтики внутренних болезней
Москва
eLibrary SPIN: 3910–6585
Д. А. Сычев
Россия
Дмитрий Алексеевич Сычев, д. м. н., проф., академик, ректор
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
Москва
eLibrary SPIN: 4525–7556
А. И. Кочетков
Россия
Алексей Иванович Кочетков, к. м. н., доцент
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
кафедры терапии и полиморбидной патологии им. академика М. С. Вовси
Москва
eLibrary SPIN: 9212–6010
Т. М. Остроумова
Россия
Татьяна Максимовна Остроумова, к. м. н., ассистент
ФГАОУ ВО «Первый Московский государственный медицинский университет имени И. М. Сеченова»
лечебный факультет
кафедра нервных болезней и нейрохирургии
Москва
eLibrary SPIN: 5043–4713
М. И. Куликова
Россия
Мария Игоревна Куликова, врач-терапевт
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
Москва
eLibrary SPIN: 6799–4786
В. А. Дё
Россия
Валерия Анатольевна Дё, ординатор II года
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
кафедра терапии и полиморбидной патологии им. академика М. С. Вовси
Москва
Список литературы
1. Ferlay J., Colombet M., Soerjomataram I., Parkin D. M., Piñeros M., Znaor A., et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021; 149 (4): 778–789. https://doi.org/10.1002/ijc.33588
2. van Dorst D. C. H., Dobbin S. J. H., Neves K. B., Herrmann J., Herrmann S. M., Versmissenet J., et al. Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circulation Research. 2021; 128 (7): 1040–61. https://doi.org/10.1161/circresaha.121.318051
3. Ruf R., Yarandi N., Ortiz-Melo D. I., Sparks M. A. Oncohypertension: Overview of hypertension with anti-cancer agents. Journal of Onco-Nephrology. 2021; 5 (1): 57–69. https://doi.org/10.1177/23993693211001374
4. Mohammed T., Singh M., Tiu J. G., Kim A. S. Etiology and management of hypertension in patients with cancer. Cardio-Oncology. 2021; 7 (1): 14. https://doi.org/10.1186/s40959–021–00101–2
5. Piccirillo J. F., Tierney R. M., Costas I., Grove L., Spitznagel Jr. E. L. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA. 2004; 291 (20): 2441–7. https://doi.org/10.1001/jama.291.20.2441
6. Gibson T. M., Li Z., Green D. M., Armstrong G. T., Mulrooney D. A., Srivastava D. K., et al. Blood pressure status in adult survivors of childhood cancer: a Report from the St. Jude Lifetime Cohort Study. Cancer Epidemiol Biomarkers Prev. 2017; 26 (12): 1705–13. https://doi.org/10.1158/1055–9965.epi-17–0510
7. Tlemsani C., Mir O., Boudou-Rouquette P., Huillard O., Maley K., Ropert S., et al. Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol. 2011; 6 (4): 253–8. https://doi.org/10.1007/s11523–011–0201-x
8. Kim D. Posterior reversible encephalopathy syndrome induced by nivolumab immunotherapy for non-small-cell lung cancer. Clin Case Rep. 2019; 7 (5): 935–8. https://doi.org/10.1002/ccr3.2122
9. National Cancer Institute DCTD Division of Cancer Treatment & Diagnosis. Common terminology criteria for adverse events (CTCAE). 2017. Available: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Аccessed: 28. 12. 2021
10. Caletti S., Paini A., Coschignano M. A., Ciuceis C. D., Nardin M., Zulli R., et al. Management of VEGF-Targeted Therapy-Induced Hypertension. Curr Hypertens Rep. 2018; 20 (8): 68. https://doi.org/10.1007/s11906–018–0871–1
11. Lankhorst S., Kappers M. H., van Esch J. H., Danser A. H. J., van den Meiracker A. H. Mechanism of hypertension and proteinuria during angiogenesis inhibition: evolving role of endothelin-1. J Hypertens. 2013; 31 (3): 444–54; discussion 454. https://doi.org/10.1097/hjh.0b013e32835c1d1b
12. Pandey A. K., Singhi E. K., Arroyo J. P., Ikizler T. A., Gould E. R., Brown J., et al. Mechanisms of VEGF (Vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension. 2018; 71 (2): e1–e8. https://doi.org/10.1161/hypertensionaha.117.10271
13. Robinson E. S., Khankin E. V., Karumanchi S. A., Humphreys B. D. Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol. 2010; 30 (6): 591–601. https://doi.org/10.1016/j.semnephrol.2010.09.007
14. Touyz R. M., Lang N. N., Herrmann J., van den Meiracker A. H., Danser A. H. J. Recent advances in hypertension and cardiovascular toxicities with vascular endothelial growth factor inhibition. Hypertension. 2017; 70 (2): 220–6. https://doi.org/10.1161/hypertensionaha.117.08856
15. Henry T. D., Rocha-Singh K., Isner J. M., Kereiakes D. J., Giordano F. J., Simons M., et al. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J. 2001; 142 (5): 872–80. https://doi.org/10.1067/mhj.2001.118471
16. Kappers M. H., de Beer V. J., Zhou Z., Danser A. H. J., Sleijfer S., Duncker D. J., et al. Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress. Hypertension. 2012; 59 (1): 151–7. https://doi.org/10.1161/hypertensionaha.111.182220
17. Mourad J. J., des Guetz G., Debbabi H., Levy B. I. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol. 2008; 19 (5): 927–34. https://doi.org/10.1093/annonc/mdm550
18. Catino A. B., Hubbard R. A., Chirinos J. A., Townsend R., Keefe S., Haas N. B., et al. Longitudinal assessment of vascular function with sunitinib in patients with metastatic renal cell carcinoma. Circ Heart Fail. 2018; 11 (3): e004408. https://doi.org/10.1161/circheartfailure.117.004408
19. Veronese M. L., Mosenkis A., Flaherty K. T., Gallagher M., Stevenson J. P., Townsend R. R., et al. Mechanisms of hypertension associated with BAY 43–9006. J Clin Oncol. 2006; 24 (9): 1363–9. https://doi.org/10.1200/JCO.2005.02.0503
20. Eechoute K., van der Veldt A. A., Oosting S., Kappers M. H. W., Wessels J. A. M., Gelderblom H., et al. Polymorphisms in endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) predict sunitinib-induced hypertension. Clin Pharmacol Ther. 2012; 92 (4): 503–10. https://doi.org/10.1038/clpt.2012.136
21. Kim J. J., Vaziri S. A., Rini B. I., Elson P., Garcia J. A., Wirka R., et al. Association of VEGF and VEGFR 2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer. 2012; 118 (7): 1946–54. https://doi.org/10.1002/cncr.26491
22. Schneider B. P., Li L., Shen F., Miller K. D., Radovich M., O’Neill A., et al. Genetic variant predicts bevacizumab-induced hypertension in ECOG-5103 and ECOG-2100. Br J Cancer. 2014; 111 (6): 1241–8. https://doi.org/10.1038/bjc.2014.430
23. Neves K. B., Rios F. J., van der Mey L., Alves-Lopes Rh., Cameron A. C., Volpe M., et al. VEGFR (Vascular Endothelial Growth Factor Receptor) inhibition induces cardiovascular damage via Redox-sensitive processes. Hypertension. 2018; 71 (4): 638–47. https://doi.org/10.1161/hypertensionaha.117.10490
24. Mirabito Colafella K. M., Neves K. B., Montezano A. C., Garrelds I. M., van Veghel R., de Vries R., et al. Selective ETA vs. dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats. Cardiovasc Res. 2020; 116 (10): 1779–90. https://doi.org/10.1093/cvr/cvz260
25. Neves K. B., Rios F. J., Jones R., Evans Th. R. J., Montezano Au. C., Touyz Rh. M., et al. Microparticles from vascular endothelial growth factor pathway inhibitortreated cancer patients mediate endothelial cell injury. Cardiovasc Res. 2019; 115 (5): 978–88. https://doi.org/10.1093/cvr/cvz021
26. Kappers M. H., van Esch J. H., Sluiter W., Sleijfer S., Danser A. H. J., van den Meiracker A. H. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension. 2010; 56 (4): 675–81. https://doi.org/10.1161/hypertensionaha.109.149690
27. Versmissen J., van Doorn L., Mirabito Colafella K. M., Mathijssen R. H., Danser A. H. J. Sunitinib-induced blood pressure rise does not involve aldosterone: observations in a patient after bilateral adrenalectomy. J Hypertens. 2018; 36 (11): 2279–80. https://doi.org/10.1097/HJH.0000000000001894
28. Lankhorst S., Severs D., Markó L., Rakova N., Titze J., Müller D. N., et al. Salt sensitivity of angiogenesis inhibition-induced blood pressure rise: role of interstitial sodium accumulation? Hypertension. 2017; 69 (5): 919–26. https://doi.org/10.1161/hypertensionaha.116.08565
29. Li W., Croce K., Steensma D. P., McDermott D. F., Benehuda O., Moslehi J. Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J Am Coll Cardiol. 2015; 66 (10): 1160–78. https://doi.org/10.1016/j.jacc.2015.07.025
30. Kappers M. H., Smedts F. M., Horn T., van Esch J. H. M., Sleijfer S., Leijten F., et al. The vascular endothelial growth factor receptor inhibitor sunitinib causes a preeclampsialike syndrome with activation of the endothelin system. Hypertension. 2011; 58 (2): 295–302. https://doi.org/10.1161/hypertensionaha.111.173559
31. Abdel-Qadir H., Ethier J. L., Lee D. S., Thavendiranathan P., Amir Ei. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: A systematic review and meta-analysis. Cancer Treat Rev. 2017; 53:120–7. https://doi.org/10.1016/j.ctrv.2016.12.002
32. An M. M., Zou Z., Shen H., Liu P., Li Chen M., Cao Yo. B., et al. Incidence and risk of significantly raised blood pressure in cancer patients treated with bevacizumab: an updated meta-analysis. Eur J Clin Pharmacol. 2010; 66 (8): 813–21. https://doi.org/10.1007/s00228–010–0815–4
33. Chen J., Lu Y. and Zheng Y. Incidence and risk of hypertension with bevacizumab in non-small-cell lung cancer patients: a meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2015; 9: 4751–60. https://doi.org/10.2147/dddt.S87258
34. Hurwitz H. I., Douglas P. S., Middleton J. P., Sledge G. W., Johnson D. H., Reardon D. A., et al. Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase III studies. Oncologist. 2013; 18 (3): 273–80. https://doi.org/10.1634/theoncologist.2012–0339
35. Liu B., Ding F., Liu Y., Xiong G., Lin T., He D., et al. Incidence and risk of hypertension associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a comprehensive network meta-analysis of 72 randomized controlled trials involving 30013 patients. Oncotarget. 2016; 7 (41): 67661–3. https://doi.org/10.18632/oncotarget.11813
36. Wu S., Chen J. J., Kudelka A., Lu J., Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008; 9 (2): 117–23. https://doi.org/10.1016/S1470–2045(08)70003–2
37. Hamnvik O. P., Choueiri T. K., Turchin A., McKay R. R., Goyal L., Davis M., et al. Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer. 2015; 121 (2): 311–9. https://doi.org/10.1002/cncr.28972
38. Robinson E. S., Matulonis U. A., Ivy P., Berlin S. T., Tyburski K., Penson R. T., et al. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol. 2010; 5 (3): 477–83. https://doi.org/10.2215/CJN.08111109
39. Totzeck M., Mincu R. I., Mrotzek S., Schadendorf D., Rassaf T. Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity: a meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol. 2018; 25 (5): 482–94. https://doi.org/10.1177/2047487318755193
40. Zhu X., Stergiopoulos K., Wu S. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009; 48 (1): 9–17. https://doi.org/10.1080/02841860802314720
41. Maitland M. L., Kasza K. E., Karrison T., Moshier K., Sit L., Black H. R., et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009; 15 (19): 6250–7. https://doi.org/10.1158/1078–0432.ccr-09–0058
42. Ranpura V., Pulipati B., Chu D., Zhu X., Wu Sh. Increased risk of high-grade hypertension with bevacizumab in cancer patients: a meta-analysis. Am J Hypertens. 2010; 23 (5): 460–8. https://doi.org/10.1038/ajh.2010.25
43. Wu S., Chen J. J., Kudelka A., Lu J., Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008; 9 (2): 117–23. https://doi.org/10.1016/S1470–2045(08)70003–2
44. George S., Reichardt P., Lechner T., Li S., Cohen D. P., Demetri G. D. Hypertension as a potential biomarker of efficacy in patients with gastrointestinal stromal tumor treated with sunitinib. Ann Oncol. 2012; 23 (12): 3180–7. https://doi.org/10.1093/annonc/mds179
45. Rini B. I., Cohen D. P., Lu D. R., Chen I., Hariharan S., Gore M. E., et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011; 103 (9): 763–73. https://doi.org/10.1093/jnci/djr128
46. Duffaud F., Sleijfer S., Litière S., Ray-Coquard I., Le Cesne A., Papai Z., et al. Hypertension (HTN) as a potential biomarker of efficacy in pazopanib-treated patients with advanced nonadipocytic soft tissue sarcoma. A retrospective study based on European Organisation for Research and Treatment of Cancer (EORTC) 62043 and 62072 trials. Eur J Cancer. 2015; 51 (17): 2615–23. https://doi.org/10.1016/j.ejca.2015.08.002
47. Caro J., Morales E., Gutierrez E., Ruilope L. M., Praga M. Malignant hypertension in patients treated with vascular endothelial growth factor inhibitors. J Clin Hypertens (Greenwich). 2013; 15 (3): 215–6. https://doi.org/10.1111/jch.12052
48. Waliany S., Sainani K. L., Park L. S., Zhang Ch. A., Srinivas S., Witteles R. M. Increase in blood pressure associated with tyrosine kinase inhibitors targeting vascular endothelial growth factor. JACC Cardio Oncol. 2019; 1 (1): 24–36. https://doi.org/10.1016/j.jaccao.2019.08.012
49. Versmissen J., Mirabito Colafella K. M., Koolen S. L. W., Jan Danser A. H. Vascular cardio-oncology: vascular endothelial growth factor inhibitors and hypertension. Cardiovasc Res. 2019; 115 (5): 904–14. https://doi.org/10.1093/cvr/cvz022
50. Langenberg M. H., van Herpen C. M., De Bono J., Schellens J. H. M., Unger C., Hoekman K., et al. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, doubleblind study of Cediranib in patients with advanced solid tumors. J Clin Oncol. 2009; 27 (36): 6152–9. https://doi.org/10.1200/JCO.2009.22.2273
51. Bottinor W. J., Shuey M. M., Manouchehri A., Farber-Eger E. H., Xu M., Nair D., et al. Reninangiotensin-aldosterone system modulates blood pressure response during vascular endothelial growth factor receptor inhibition. JACC Cardio Oncol. 2019; 1 (1): 14–23. https://doi.org/10.1016/j.jaccao.2019.07.002
52. Patnaik A., Appleman L. J., Tolcher A. W., Papadopoulos K. P., Beeram M., Rasco D. W., et al. First-in-human phase I study of copanlisib (BAY 80–6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann Oncol. 2016; 27 (10): 1928–40. https://doi.org/10.1093/annonc/mdw282
53. Eltantawy A., Vallejos X., Sebea E., Evans K. Copanlisib: an intravenous phosphatidylinositol 3-kinase (PI3K) inhibitor for the treatment of relapsed follicular lymphoma. Ann Pharmacother. 2019; 53 (9): 954–8. https://doi.org/10.1177/1060028019833992
54. Seront E., Rottey S., Filleul B., Glorieux Ph., Goeminne J.-Ch., Verschaeve V., et al. Phase II study of dual phosphoinositolkinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma. BJU Int. 2016; 118 (3): 408–15. https://doi.org/10.1111/bju.13415
55. Bishnoi R., Xie Z., Shah C., Bian J., Murthy H. S., Wingard J. R., et al. Real-world experience of carfilzomib-associated cardiovascular adverse events: SEER-Medicare data set analysis. Cancer Med. 2021; 10 (1): 70–8. https://doi.org/10.1002/cam4.3568
56. Fakhri B., Fiala M. A., Shah N., Vij R., Wildes T. M. Measuring cardiopulmonary complications of carfilzomib treatment and associated risk factors using the SEER-Medicare database. Cancer. 2020; 126 (4): 808–13. https://doi.org/10.1002/cncr.32601
57. Dimopoulos M. A., Goldschmidt H., Niesvizky R., Joshua D., Chng W.-J., Oriol A., et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017; 18 (10): 1327–37. https://doi.org/10.1016/S1470–2045(17)30578–8
58. Waxman A. J., Clasen S., Hwang W. T., Garfall A., Vogl D. T., Carver J., et al. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol. 2018; 4 (3): e174519. https://doi.org/10.1001/jamaoncol.2017.4519
59. Katsi V., Magkas N., Georgiopoulos G., Athanasiadi E., Virdis A., Masi S, et al. Arterial hypertension in patients under antineoplastic therapy: a systematic review. J Hypertens. 2019; 37 (5): 884–901. https://doi.org/10.1097/hjh.0000000000002006
60. Motzer R. J., Hutson T. E., Glen H., Michaelson M. D., Molina A., Eisen T., et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015; 16 (15): 1473–82. https://doi.org/10.1016/S1470–2045(15)00290–9
61. U. S. Food & Drug Administration. Highlights of prescribing information. 2016. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208573s013l-bl.pdf Accessed: 27. 11. 2021
62. Karar J., Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011; 4:51. https://doi.org/10.3389/fnmol.2011.00051
63. Coutre S. E., Byrd J. C., Hillmen P., Barrientos J. C., Barr P. M., Devereux S., et al. Long-term safety of single-agent ibrutinib in patients with chronic lymphocytic leukemia in 3 pivotal studies. Blood Adv. 2019; 3 (12): 1799–807. https://doi.org/10.1182/bloodadvances.2018028761
64. Byrd J. C., Wierda W. G., Schuh A., Devereux S., Chaves J. M., Brown J. R, et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: updated phase 2 results. Blood. 2020; 135 (15): 1204–13. https://doi.org/10.1182/blood.2018884940
65. Dickerson T., Wiczer T., Waller A., Philippon J., Porter K., Haddad D., et al. Hypertension and incident cardiovascular events following ibrutinib initiation. Blood. 2019; 134 (22): 1919–28. https://doi.org/10.1182/blood.2019000840
66. Barr P. M., Robak T., Owen C., Tedeschi A., Bairey O., Bartlett N. L., et al. Sustained efficacy and detailed clinical follow-up of first-line ibrutinib treatment in older patients with chronic lymphocytic leukemia: extended phase 3 results from RESONATE-2. Haematologica. 2018; 103 (9): 1502–10. https://doi.org/10.3324/haematol.2018.192328
67. Patrinely J. R., Jr., Young A. C., Quach H., Williams G. R., Ye F., Fan R., et al. Survivorship in immune therapy: Assessing toxicities, body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand. Eur J Cancer. 2020; 135: 211–20. https://doi.org/10.1016/j.ejca.2020.05.005
68. Puyo S., Montaudon D., Pourquier P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol. 2014; 89 (1): 43–61. https://doi.org/10.1016/j.critrevonc.2013.07.006
69. Berendes E., Cullen P., Van Aken H., Zidek W., Erren M., Hübschen M., et al. Endogenous glycosides in critically ill patients. Crit Care Med. 2003; 31 (5): 1331–7. https://doi.org/10.1097/01.CCM.0000059721.57219.C3
70. Graves S. W., Eder J. P., Schryber S. M., Sharma K., Brena A., Antman K. H., et al. Endogenous digoxin-like immunoreactive factor and digitalis-like factor associated with the hypertension of patients receiving multiple alkylating agents as part of autologous bone marrow transplantation. Clin Sci (Lond). 1989; 77 (5): 501–7. https://doi.org/10.1042/cs0770501
71. Knijnenburg S. L., Jaspers M. W., van der Pal H. J., Schouten-van Meeteren A. Y., Bouts A. H., Lieverst J. A., et al. Renal dysfunction and elevated blood pressure in long-term childhood cancer survivors. Clin J Am Soc Nephrol. 2012; 7 (9): 1416–27. https://doi.org/10.2215/cjn.09620911
72. Meinardi M. T., Gietema J. A., van der Graaf W. T., van Veldhuisen D. J., Runne M. A., Sluiter W. J., et al. Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J Clin Oncol. 2000; 18 (8): 1725–32. https://doi.org/10.1200/JCO.2000.18.8.1725
73. de Vos F. Y., Nuver J., Willemse P. H., van der Zee A. G. J., Messerschmidt J., Burgerhof J. G. M., et al. Long-term survivors of ovarian malignancies after cisplatin-based chemotherapy; cardiovascular risk factors and signs of vascular damage. Eur J Cancer. 2004; 40 (5): 696–700. https://doi.org/10.1016/j.ejca.2003.11.026
74. Sagstuen H., Aass N., Fosså S. D., Dahl O., Klepp O., Wist E. A., et al. Blood pressure and body mass index in long-term survivors of testicular cancer. J Clin Oncol. 2005; 23 (22): 4980–90. https://doi.org/10.1200/jco.2005.06.882
75. Strumberg D., Brugge S., Korn M. W., Koeppen S., Ranft J., Scheiber G., et al. Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol. 2002; 13 (2): 229–36. https://doi.org/10.1093/annonc/mdf058
76. Lauritsen J., Hansen M. K., Bandak M., Kreiberg M. B., Skøtt J. W., Wagner Th., et al. Cardiovascular risk factors and disease after Male germ cell cancer. J Clin Oncol. 2020; 38 (6): 584–92. https://doi.org/10.1200/JCO.19.01180
77. Nuver J., Smit A. J., Wolffenbuttel B. H., Sluiter W. J., Hoekstra H. J., Sleijfer D. T., et al. The metabolic syndrome and disturbances in hormone levels in long-term survivors of disseminated testicular cancer. J Clin Oncol. 2005; 23 (16): 3718–25. https://doi.org/10.1200/JCO.2005.02.176
78. Soultati A., Mountzios G., Avgerinou C., Papaxoinis G., Pectasides D., Dimopoulos M.-A., et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012; 38 (5): 473–83. https://doi.org/10.1016/j.ctrv.2011.09.002
79. Boer H., Proost J. H., Nuver J., Bunskoek S., Gietema J. Q., Geubels B. M., et al. Long-term exposure to circulating platinum is associated with late effects of treatment in testicular cancer survivors. Ann Oncol. 2015; 26 (11): 2305–10. https://doi.org/10.1093/annonc/mdv369
80. Izzedine H., Isnard-Bagnis C., Launay-Vacher V., Mercadal L., Tostivint I., Rixe O., et al. Gemcitabine-induced thrombotic microangiopathy: a systematic review. Nephrol Dial Transplant. 2006; 21 (11): 3038–45. https://doi.org/10.1093/ndt/gfl507
81. Roca E., Bruera E., Politi P. M., Barugel M., Cedaro L., Carraro S., et al. Vinca alkaloid-induced cardiovascular autonomic neuropathy. Cancer Treat Rep. 1985; 69 (2): 149–51.
82. Noor B., Akhavan S., Leuchter M., Yang E. H., Ajijola O. A. Quantitative assessment of cardiovascular autonomic impairment in cancer survivors: a single center case series. Cardiooncology. 2020; 6:11. https://doi.org/10.1186/s40959–020–00065–9
83. Iacovelli R., Ciccarese C., Bria E., Romano M., Fantinel E., Bimbatti D., et al. The ardiovascular toxicity of abiraterone and enzalutamide in prostate cancer. Clin Genitourin Cancer. 2018; 16 (3): e645–53. https://doi.org/10.1016/j.clgc.2017.12.007
84. Mirza M. R., Monk B. J., Herrstedt J., Oza A. M., Mahner S., Redondo A., et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016; 375 (22): 2154–64. https://doi.org/10.1056/nejmoa1611310
85. La Fargue C. J., Dal Molin G. Z., Sood A. K., Coleman R. L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 2019; 20 (1): e15–e28. https://doi.org/10.1016/S1470–2045(18)30786–1
86. Ison G., Howie L. J,, Amiri-Kordestani L., Zhang L., Tang Sh., Sridhara R., et al. FDA approval summary: Niraparib for the maintenance treatment of patients with recurrent ovarian cancer in response to platinum-based chemotherapy. Clin Cancer Res. 2018; 24 (17): 4066–71. https://doi.org/10.1158/1078–0432.CCR-18–0042
87. Long G. V., Stroyakovskiy D., Gogas H., Levchenko E., de Braud F., Larkin J., et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014; 371 (20): 1877–88. https://doi.org/10.1056/NEJMoa1406037
88. Luebker S. A., Koepsell S. A. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front Oncol. 2019; 9: 268. https://doi.org/10.3389/fonc.2019.00268
89. Isenberg J. S., Ridnour L. A., Dimitry J., Frazier W. A., Wink D. A., Roberts D. D. CD 47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem. 2006; 281 (36): 26069–80. https://doi.org/10.1074/jbc.M605040200
90. Bronte E., Bronte G., Novo G., Rinaldi G., Bronte F., Passiglia F., et al. Cardiotoxicity mechanisms of the combination of BRAF-inhibitors and MEK-inhibitors. Pharmacol Ther. 2018; 192: 65–73. https://doi.org/10.1016/j.pharmthera.2018.06.017
91. Mincu R. I., Mahabadi A. A., Michel L., Mrotzek S. M., Schadendorf D., Rassaf T., et al. Cardiovascular adverse events associated with BRAF and MEK inhibitors: a systematic review and meta-analysis. JAMA Netw Open. 2019; 2 (8): e198890. https://doi.org/10.1001/jamanetworkopen.2019.8890
92. Long G. V., Stroyakovskiy D., Gogas H., Levchenko E., de Braud F., Larkin J. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015; 386 (9992): 444–51. https://doi.org/10.1016/S0140–6736(15)60898–4
93. Robert C., Flaherty K., Nathan P., Hersey P., Garbe C., Milhem M., et al. Five-year outcomes from a phase 3 METRIC study in patients with BRAF V600 E/K-mutant advanced or metastatic melanoma. Eur J Cancer. 2019; 109: 61–69. https://doi.org/10.1016/j.ejca.2018.12.015
94. Chao M. P., Jaiswal S., Weissman-Tsukamoto R., Alizadeh A. A., Gentles A. J., Volkmer J., et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD 47. Sci Transl Med. 2010; 2 (63): 63ra94. https://doi.org/10.1126/scitranslmed.3001375
95. Liu F., Jiang C. C., Yan X. G., Tseng H.-Yi, Wang Ch. Ya, Zhang Yu Yu, et al. BRAF/MEK inhibitors promote CD 47 expression that is reversible by ERK inhibition in melanoma. Oncotarget. 2017; 8 (41): 69477–92. https://doi.org/10.18632/oncotarget.17704
96. Wirth L. J., Sherman E., Robinson B., Solomon B., Kang H., Lorch J., et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med. 2020; 383 (9): 825–35. https://doi.org/10.1056/nejmoa2005651
97. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 2001; 12 (4): 361–73. https://doi.org/10.1016/s1359–6101(01)00012–0
98. Клинические рекомендации Артериальная гипертензия у взрослых: КБ 10: I10/I11/I12/I13/I15) 2020 г. ID: КР62. https://cr.minzdrav.gov.ru/schema/622. Дата обращения: 29. 12. 2021. / Clinical guidelines. Arterial hypertension in adults. 2020. ID: КР62. Available: https://cr.minzdrav.gov.ru/schema/62_2. Accessed: 29. 12. 2021. (In Russ.)]
Рецензия
Для цитирования:
Остроумова О.Д., Сычев Д.А., Кочетков А.И., Остроумова Т.М., Куликова М.И., Дё В.А. Противоопухолевые препараты и лекарственно-индуцированная артериальная гипертензия. Медицинский алфавит. 2022;(17):30-41. https://doi.org/10.33667/2078-5631-2022-17-30-41
For citation:
Ostroumova O.D., Sychev D.A., Kochetkov A.I., Ostroumova T.M., Kulikova M.I., De V.A. Anti-cancer agents and drug-induced hypertension. Medical alphabet. 2022;(17):30-41. (In Russ.) https://doi.org/10.33667/2078-5631-2022-17-30-41