Preview

Medical alphabet

Advanced search

Variety of β-glucans: properties, adequate and clinically effective doses

https://doi.org/10.33667/2078-5631-2022-16-121-126

Abstract

A review of the existing literature on the problem in recent years was carried out using the RSCI, CyberLeninka, Pubmed, and ReserchGate databases. Structurally, βglucans are complex natural polysaccharides consisting of monomeric βD-glucose units covalently linked by glycosidic bonds in various positions. βGlucans are found in bacteria, algae, edible fungi (bodies and cultivated mycelium) and cereals. According to the source of origin, βglucans are classified into cereal and non-cereal. Grain-derived βglucans (oats, barley, wheat, and rice) typically have 1,3–1,4 glycosidic linkages with no 1,6-linkages or branches, while non-grain-derived βglucans (baker’s yeast, edible mushrooms, bacteria) have linear (1,3) chains with long branching chains 1,6. The functional properties of βglucans are determined by the length of the backbone (degree of polymerization), the ratio of bonds 1.3:1.4 or bonds 1.3:1.6 (degree of branching), branching interval, side chain size and molecular weight. Grain βglucans are classified as dietary fiber in terms of their properties and mechanism of action. The effective dose of cereal βglucans, which provides efficacy in metabolic disorders (glucose, cholesterol levels) and gastrointestinal functions, as well as a probiotic effect, is from 3 to 8 g (most often 4.5 g) with a duration of intake of at least 3 weeks. Non-cereal (predominantly from fungi and yeast) βglucans have a 1,3 and 1,6 bond structure and are recognized by several receptors including dectin 1, complement receptor 3 (CR 3) and toll-like receptors (TLRs) and have more pronounced immunomodulatory functions. The main mechanisms of their action have been established in vivo experiments or animal models. Non-cereal βglucans are used as adjuvants in drug therapy at doses ranging from 20 mg for the common cold to 750 mg for cancer. In accordance with the domestic legal framework governing the use of food ingredients in the production of dietary supplements and specialized food products, βglucans are not separated by their source of origin. The currently established adequate level of intake of these polysaccharides, regardless of the source of their receipt, is 200 mg/day, and the upper acceptable level is 1000 mg/day. An analysis of literature data indicates the need to differentiate βglucans and increase the permitted doses of cereal βglucans to the level established for soluble dietary fibers.

About the Authors

V. M. Kodentsova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Kodentsova Vera M., Dr Bio Sci (habil.), professor, chief researcher of the Laboratory of vitamins and minerals

Moscow



D. M. Risnik
Moscow State University M. V. Lomonosov
Russian Federation

Risnik Dmitry V., PhD Bio Sci, leading researcher at Dept of Biophysics, Faculty of Biology

Moscow



References

1. Caseiro C., Dias J. N.R., de Andrade Fontes C. M.G., Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int. J. Mol. Sci. 2022;23(6):3156. doi: 10.3390/ijms23063156

2. Zhang K., Dong R., Hu X., Ren C., Li Y. Oat-based foods: Chemical constituents, glycemic index, and the effect of processing. Foods. 2021;10(6):1304. doi: 10.3390/foods10061304

3. Bashir K. M.I., Choi J. S. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int. J. Mol. Sci. 2017;18(9):1906. doi: 10.3390/ijms18091906

4. Cummings J. H., Stephen A. M. Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 2007;61:5–18. doi: 10.1038/sj.ejcn.1602936

5. Murphy E. J., Rezoagli E., Major I., Rowan N. J., Laffey J. G. β-glucan metabolic and immunomodulatory properties and potential for clinical application. J. Fungi (Basel). 2020;6(4):356. doi: 10.3390/jof6040356

6. Mathews R., Kamil A., Chu Y. Global review of heart health claims for oat beta-glucan products. Nutrition Reviews, 78 (Suppl.1): 78–97. https://doi.org/10.1093/nutrit/nuz069

7. Uniform sanitary-epidemiological and hygienic requirements for goods subject to sanitary-epidemiological supervision (control) (Chapter II. Section 1. Requirements for the safety and nutritional value of food products), approved by the Decision of the Commission of the Customs Union of May 28, 2010 N 299.

8. MR 2.3.1.0253–21 «Norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation».

9. Shkolnikova M. N., Ponomarev A. S. The use of β-glucan concentrates from various raw materials as food additives. Review. XXI century: results of the past and problems of the present plus. 10(2),109–112. DOI: 10.46548/21vek-2021–1054–0020.

10. Zurbau A., Noronha J., Khan T., Sievenpiper J., Wolever T. M. Oat beta-glucan and postprandial blood glucose regulation: A systematic review and meta-analysis of acute, single-meal feeding, controlled trials. Current Developments in Nutrition, 2020, 4(Supplement_2), 677–677. doi: 10.1093/cdn/nzaa049_070

11. Biorklund M., Rees A. V., Mensink R. P., Onning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with β-glucans from oats or barley: A randomised dose-controlled trial. Eur. J. Clin. Nutr. 2005;59:1272–1281. doi: 10.1038/sj.ejcn.1602240

12. Granfeldt Y., Nyberg L., Björck I. Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects. Eur. J. Clin. Nutr. 2008;62:600–607. doi: 10.1038/sj.ejcn.1602747

13. Shen X. L., Zhao T., Zhou Y., Shi X., Zou Y., Zhao G. Effect of oat β-glucan intake on glycaemic control and insulin sensitivity of diabetic patients: a meta-analysis of randomized controlled trials. Nutrients. 2016;8(1):39. https://doi.org/10.3390/nu8010039

14. Ho H. V., Sievenpiper J. L., Zurbau A., Blanco Mejia S., Jovanovski E., Au-Yeung F., Jenkins A. L., Vuksan V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr. 2016;116(8):1369–1382. doi: 10.1017/S000711451600341X

15. Cronin P., Joyce S. A., O’Toole P. W., O’Connor E. M. Dietary fibre modulates the gut microbiota. Nutrients. 2021;13(5):1655. doi: 10.3390/nu13051655

16. Wang Y., Ames NP., Tun H. M., Tosh S. M., Jones P. J., Khafipour E. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol. 2016;7:129. doi: 10.3389/fmicb.2016.00129.

17. Xie Y., Gou L., Peng M., Zheng J., Chen L. Effects of soluble fiber supplementation on glycemic control in adults with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2021;40(4):1800–1810. doi: 10.1016/j.clnu.2020.10.032

18. Jovanovsk, E., Khayyat R., Zurbau A., Komishon A., Mazhar N., Sievenpiper J. L. Sonia Blanco Mejia 1 2 3, Hoang Vi Thanh Ho 1, Dandan Li 1 2, Alexandra L Jenkins 1, Lea Duvnjak, Vuksan V. Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controlled trials. Diabetes Care, 42(5);755–766. DOI: 10.2337/dc18–1126

19. Babiker R., Elmusharaf K., Keogh M. B., Banaga A. S.I., Saeed A. M. Metabolic effect of gum Arabic (Acacia Senegal) in patients with type 2 diabetes mellitus (T2DM): Randomized, placebo controlled double blind trial. Funct. Foods. Health. Dis. 2018;7:222. doi: 10.31989/ffhd.v7i3.325.

20. Do Carmo M. M.R., Walker J. C.L., Novello D., Caselato V. M., Sgarbieri V. C., Ouwehand A. C., Andreollo N. A., Hiane, P. A. Dos Santos, E. F. Polydextrose: Physiological Function, and Effects on Health. Nutrients 2016;8:553. https://doi.org/10.3390/nu8090553

21. EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations, increase in satiety leading to a reduction in energy intake, reduction of post-prandial glycaemic responses, and “digestive function” pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2207.

22. Henrion M., Francey C., Lê K. A., Lamothe L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients. 2019;11:1729. doi: 10.3390/nu11081729

23. Bonfim-Mendonca P.D.S., Capoci I. R.G., Tobaldini-Valerio F.K., Negri M., Svidzinski T. I.E. Overview of β-glucans from laminaria spp.: Immunomodulation properties and applications on biologic models. Int. J. Mol. Sci. 2017;18(9):1629. doi: 10.3390/ijms18091629

24. Smith A. J., Graves B., Child R., Rice P. J., Ma Z., Lowman D. W., Ensley H. E., Ryter, K.T., Evans J. T., Williams D. L. Immunoregulatory activity of the natural product laminarin varies widely as a result of its physical properties. J. Immunol. 2018;200(2):788–799. doi: 10.4049/jimmunol.1701258

25. Gotteland M., Riveros K., Gasaly N., Carcamo C., Magne F., Liabeuf G., Beattie A., Rosenfeld S. The pros and cons of using algal polysaccharides as prebiotics. Front Nutr. 2020;7:163. doi: 10.3389/fnut.2020.00163

26. van Steenwijk H. P., Bast A., de Boer A. Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients. 2021;13(4):1333. doi: 10.3390/nu13041333

27. Meng Y., Lyu F., Xu X., Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides Biomacromolecules. 2020;21(5):1653–1677. doi: 10.1021/acs.biomac.9b01644

28. Vetvicka V., Vetvickova J. Glucans and Cancer: Comparison of Commercially Available β-glucans–Part IV. Anticancer research. 2018; 38(3):1327–1333. doi:10.21873/anticanres.12355

29. Xiao Z., Zhou W., Zhang Y. Fungal polysaccharides. Adv Pharmacol. 2020;87:277–299. doi: 10.1016/bs.apha.2019.08.003

30. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the safety of ‘yeast beta-glucans’ as a Novel Food ingredient. EFSA J. 2011;9(5):2137. https://doi.org/10.2903/j.efsa.2011.213

31. Avramia I., Amariei S. Spent Brewer’s yeast as a source of insoluble β-glucans. Int. J. Mol. Sci. 2021;22(2):825. doi: 10.3390/ijms22020825

32. Cerletti C., Esposito S., Iacoviello L. Edible Mushrooms and Beta-Glucans: Impact on Human Health Nutrients. 2021;13(7):2195. doi: 10.3390/nu13072195

33. Vetvicka V., Teplyakova T. V., Shintyapina A. B., Korolenko T. A. Effects of medicinal fungi-derived β-glucan on tumor progression. J. Fungi (Basel). 2021;7(4):250. doi: 10.3390/jof7040250

34. Mortensen A., Aguilar F., Crebelli R., Di Domenico A., Frutos M. J., Galtier P., Gott D., Gundert-Remy U., Lambré C., Leblanc J. C., Lindtner O., Moldeus P., Mosesso P., Oskarsson A., Parent-Massin D., Stankovic I., Waalkens-Berendsen I., Woutersen R.A, Wright M., Younes M. Brimer L., Christodoulidou A., Lodi F., Tard A., Dusemund B. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS Re-evaluation of acacia gum (E 414) as a food additive. EFSA J. 2017;15(4): e04741. doi: 10.2903/j.efsa.2017.4741

35. Raza G. S., Putaala H., Hibberd A. A., Alhoniemi E., Tiihonen K., Mäkelä K. A., Herzig K. H. Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci. Rep. 2017;7(1):5294. doi: 10.1038/s41598–017–05259–3

36. Saarinen M. T., Kärkkäinen O., Hanhineva K, Tiihonen K., Hibberd A., Mäkelä K. A., Raza G. S., Herzig K. H., Anglenius H. Metabolomics analysis of plasma and adipose tissue samples from mice orally administered with polydextrose and correlations with cecal microbiota Sci. Rep. 2020;10:21577. doi: 10.1038/s41598–020–78484-y

37. Canfora E. E., Blaak E. E. The role of polydextrose in body weight control and glucose. Curr Opin Clin Nutr Metab Care 2015;18(4):395–400. doi: 10.1097/MCO.0000000000000184.

38. Del Cornò M., Gessani S., Conti L. Shaping the innate immune response by dietary glucans: any role in the control of cancer? Cancers (Basel). 2020;12(1):155. doi: 10.3390/cancers12010155

39. Llanaj E., Dejanovic G. M., Valido E., Bano A., Gamba M., Kastrati L., Minder B., Stojic S., Voortman T., Marques-Vidal P., Stoyanov J., Metzger B., Glisic M., Kern H., Muka T. Effect of oat supplementation interventions on cardiovascular disease risk markers: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr. 2022;1–30. doi: 10.1007/s00394–021–02763–1

40. Gematdinova V. M., Kanarskaia Z. A., Kanarskii A. V. Opportunities of industrial production and prospects for variety growth of food enriched with β-glucans. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol’zovaniye. 2021;2 (50):82–100. DOI: 10.25686/2306–2827.2021.2.82

41. Yakovleva S. Y., Trigub V. V., Popov V. G. Recipes and Technologies Improvement for Yogurt Production of Functional Use. Food industry. 2021;6(2):67–74. DOI: 10.29141/2500–1922–2021–6–2–8


Review

For citations:


Kodentsova V.M., Risnik D.M. Variety of β-glucans: properties, adequate and clinically effective doses. Medical alphabet. 2022;(16):121-126. (In Russ.) https://doi.org/10.33667/2078-5631-2022-16-121-126

Views: 858


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)