Vitamin D and pancreatic cancer: Impact on oncogenesis, prospects for use in diagnosis and treatment
https://doi.org/10.33667/2078-5631-2022-5-29-37
Abstract
According to the International Foundation for Research on Cancer, malignant neoplasms of the pancreas are the fourth leading cause of death among all oncological nosologies. Over the past few years, there has been a trend in the form of an increase in the number of newly diagnosed cases of the disease. The disappointing data of pancreatic cancer statistics dictate the conditions for a more intensive study of nature, the search for new possible methods for the early detection and treatment of pancreatic cancer. One of the promising areas is to study the effect of vitamin D and its derivatives on carcinogenesis and prevention of pancreatic cancer. Vitamin D and its derivatives have the ability to regulate growth, differentiation, apoptosis and angiogenesis of cells, thus, the concentration of this substance in blood plasma in patients at risk of developing pancreatic cancer can be used in a set of measures for the early detection of this pathology. One of the morphological features of pancreatic cancer, which determines resistance to chemotherapeutic agents, is the presence of a desmoplastic stroma. Vitamin D is able to influence the functioning of the elements of the desmoplastic stroma of pancreatic cancer, which may contribute to an improved effect of cytotoxic chemotherapy and the formation of an immunogenic response to treatment. One of the pleiotropic effects of vitamin D is in the regulation of the immune system: it may play a role in increasing the sensitivity of tumors to other immunotherapies. These areas are considered promising in the treatment of pancreatic cancer. The purpose of this literature review is to highlight the effect of vitamin D on carcinogenesis, early detection and treatment of pancreatic cancer.
About the Authors
V. E. MoiseenkoRussian Federation
Moiseenko Vladislav E., PhD Med, surgeon, oncologist of Dept of Surgery No. 2
Saint Petersburg
A. V. Pavlovsky
Russian Federation
Pavlovsky Alexander V., DM Sci (habil.), chief researcher
Saint Petersburg
S. A. Popov
Russian Federation
Popov Sergey A., PhD Med, surgeon, oncologist of Dept of Surgery No. 2
Saint Petersburg
A. E. Kovenko
Russian Federation
Kovenko Albina E., post-graduate student of Dept of Radiology, Surgery and Oncology
Saint Petersburg
L. A. Solovyova
Russian Federation
Solovyova Lyudmila A., resident of Dept of Radiology, Surgery and Oncology
Saint Petersburg
K. N. Semenov
Russian Federation
Semenov Konstantin N., Doctor of Chem Sci (habil.), professor, head of Dept of General and Bioorganic Chemistry
Saint Petersburg
V. V. Sharoiko
Russian Federation
Sharoiko Vladimir V., Doctor of Bio Sci (habil.), professor, professor at Dept of General and Bioorganic Chemistry
Saint Petersburg
D. A. Granov
Russian Federation
Granov Dmitry A., DM Sci (habil.), professor, academician of RAS, scientific adviser
Saint Petersburg
References
1. American Cancer Society. Cancer facts & figures: Special section – Pancreatic cancer. Atlanta, GA 2013. www.cancer.org/research/cancer-facts-statistics/all-cancer-factsfigures/cancer-facts-figures-2013.html.
2. Bikle D. D. Extraskeletal actions of vitamin D. Ann NY Acad Sci. 2016; 1376 (1): 29–52.
3. Holick M. F. Sunlight and vitamin D for bone health and prevention of autoimmune Diseases, cancers, and cardiovascular Disease. Am J Clin Nutr. 2004; 80 (6 Suppl): 1678S-88S.
4. Apperly F. L. The relation of solar radiation to cancer mortality in North America. Cancer Res 1941; 1: 191–195.
5. Garland C. F., Garland F. C. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol. 1980; 9 (3): 227–31
6. Giovannucci E., Liu Y., Rimm E. B., Hollis B. W., Fuchs C. S., Stampfer M. J., Willett W. C. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006; 98 (7): 451–9.
7. Easty D. J., Farr C. J., Hennessy B. T. New Roles for Vitamin D Superagonists: From COVID to Cancer. Front Endocrinol (Lausanne). 2021; 12: 644298.
8. Tran B., Whiteman D. C., Webb P. M., Fritschi L., Fawcett J., Risch H. A., Lucas R., Pandeya N., Schulte A., Neale R. E. Queensland Pancreatic Cancer Study Group. Association between ultraviolet radiation, skin sun sensitivity and risk of pancreatic cancer. Cancer Epidemiol. 2013; 37 (6): 886–92.
9. Melek K. E., Hasan M., Seyda G., Mukremin U., Fatma Y. M., Hasan S. More sunlight exposure may improve the overall survival in patients with pancreas cancer. Journal of Oncological Sciences. 2016; 2 (2–3): 73–76.
10. Wolpin B. M., Ng K., Bao Y., Kraft P., Stampfer M. J., Michaud D. S., Ma J., Buring J. E., Sesso H. D., Lee I. M., Rifai N., Cochrane B. B., Wactawski-Wende J., Chlebowski R. T., Willett W. C., Manson J. E., Giovannucci E. L., Fuchs C. S. Plasma 25-hydroxyvitamin D and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2012; 21 (1): 82–91.
11. Stolzenberg-Solomon R.Z., Jacobs E. J., Arslan A. A., Qi D., Patel A. V., Helzlsouer K. J., Weinstein S. J., McCullough M.L., Purdue M. P., Shu X. O., Snyder K, Virtamo J., Wilkins L. R., Yu K., Zeleniuch-Jacquotte A., Zheng W., Albanes D., Cai Q., Harvey C., Hayes R., Clipp S., Horst R. L., Irish L., Koenig K., Le Marchand L., Kolonel L. N. Circulating 25-hydroxyvitamin D and risk of pancreatic cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am J Epidemiol. 2010; 172 (1): 81–93.
12. Fleet J. C., DeSmet M., Johnson R., Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012; 441 (1): 61–76.
13. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006; 92 (1): 4–8.
14. Picotto G., Liaudat A. C., Bohl L., Tolosa De Talamoni N. Molecular aspects of vitamin D anticancer activity. Cancer Invest. 2012; 30 (8): 604–14.
15. Боровик Т. Э., Бушуева Т. В., Звонкова Н. Г., Лукоянова О. Л., Семенова Н. Н., Скворцова В. А., Яцык Г. В., Яцык С. П. Роль питания в обеспечении витамином D. Практическая медицина М. 2017; 5 (106): 15–18. Borovik T. E., Bushueva T. V., Zvonkova N. G., Lukoyanova O. L., Semenova N. N., Skvortsova V. A., Yatsyk G. V., Yatsyk S. P. The role of nutrition in providing vitamin D. Practical Medicine M. 2017; 5 (106): 15–18.
16. Llor X., Jacoby R. F., Teng B. B., Davidson N. O., Sitrin M. D., Brasitus T. A. K-ras mutations in 1,2-dimethylhydrazine-induced colonic tumors: effects of supplemental Dietary calcium and vitamin D Deficiency. Cancer Res. 1991 Aug; 51 (16): 4305–9.
17. Norman A. W. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology. 2006; 147 (12): 5542–8.
18. Mizwicki M.T, Norman A. W. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci Signal. 2009; 2 (75): re4.
19. Richard C. L. Farach-Carson M., Rohe B., Nemere L., Meckling K. Involvement of 1,25D 3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp Cell Res. 2010; 316 (5):695–703.
20. Bouillon R., Carmeliet G., Verlinden L., van Etten E., Verstuyf A., Luderer H. F., Lieben L., Mathieu C., Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008; 29 (6): 726–76.
21. Racz A., Barsony J. Hormone-dependent translocation of vitamin D receptors is linked to transactivation. J Biol Chem. 1999; 274 (27): 19352–60.
22. Spina C. S., Tangpricha V., Uskokovic M., Adorinic L., Maehr H., Holick M. F. Vitamin D and cancer. Anticancer Res. 2006; 26 (4A): 2515–24.
23. Haussler M. R., Haussler C. A., Bartik L., Whitfield G. K., Hsieh J. C., Slater S., Jurutka P. W. Vitamin D receptor: molecular signaling and actions of nutritional ligands in Disease prevention. Nutr Rev. 2008; 66 (10(2)): 98–112.
24. Carlberg C., Munoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol. 2020: 1044–579X(20)30114–0.
25. Deeb K. K., Trump D. L., Johnson C. S. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007; 7 (9): 684–700.
26. Slatopolsky E., Dusso A., Brown A. New analogs of vitamin D 3. Kidney Int Suppl. 1999; 73: 46–51.
27. Charoenngam N., Holick M. F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients. 2020; 12 (7): 2097.
28. Yin K., Agrawal D. K. Vitamin D and inflammatory Diseases. J Inflamm Res. 2014; 7: 69–87
29. Calmarza P., Sanz Paris A., Prieto Lopez C., Llorente Barrio M., Boj Carceller D. Vitamin D levels in patients with recent cancer Diagnosis. Nutr Hosp. 2018; 35 (4): 903–908.
30. Seyedalipour F., Mansouri A., Vaezi M., Gholami K., Heidari K., Hadjibabaie M., Ghavamzadeh A. High Prevalence of Vitamin D Deficiency in Newly Diagnosed Acute Myeloid Leukemia Patients and Its Adverse Outcome. Int J Hematol Oncol Stem Cell Res. 2017; 11 (3): 209–216.
31. Holick M. F. The vitamin D Deficiency pandemic: Approaches for Diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017; 18 (2): 153–165.
32. Wu G., Fan R. S., Li W., Ko T. C., Brattain M. G. Modulation of cell cycle control by vitamin D 3 and its analogue, EB 1089, in human breast cancer cells. Oncogene. 1997; 15 (13): 1555–63.
33. Saramaki A., Banwell C. M., Campbell M. J., Carlberg C. Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D 3 receptor. Nucleic Acids Res. 2006; 34 (2): 543–54.
34. Liu M., Lee M. H., Cohen M., Bommakanti M., Freedman L. P. Transcriptional activation of the Cdk inhibitor p21 by vitamin D 3 leads to the induced Differentiation of the myelomonocytic cell line U 937. Genes Dev. 1996; 10 (2): 142–53.
35. Li M., Li L., Zhang L., Hu W., Shen J., Xiao Z., Wu X., Chan F. L., Cho C. H. 1,25-Dihydroxyvitamin D 3 suppresses gastric cancer cell growth through VDR- and mutant p53-mediated induction of p21. Life Sci. 2017; 179: 88–97.
36. Diaz G. D., Paraskeva C., Thomas M. G., Binderup L., Hague A. Apoptosis is induced by the active metabolite of vitamin D 3 and its analogue EB 1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res. 2000; 60 (8): 2304–12.
37. Jiang F., Bao J., Li P., Nicosia S. V., Bai W. Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D 3 through the Down-regulation of telomerase. J Biol Chem. 2004; 279 (51): 53213–21.
38. Kasiappan R., Shen Z., Tse A. K., Jinwal U., Tang J., Lungchukiet P., Sun Y., Kruk P., Nicosia S. V., Zhang X., Bai W. 1,25-Dihydroxyvitamin D 3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem. 2012; 287 (49): 41297–309.
39. Hershberger P. A., Yu W. D., Modzelewski R. A., Rueger R. M., Johnson C. S., Trump D. L. Calcitriol (1,25-dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis. Clin Cancer Res. 2001; 7 (4): 1043–51.
40. Yu W. D., Ma Y., Flynn G. Calcitriol enhances gemcitabine anti-tumor activity in vitro and in vivo by promoting apoptosis in a human pancreatic carcinoma model system. Cell Cycle. 2010; 9 (15): 3022–3029.
41. Bao A., Li Y., Tong Y., Zheng H., Wu W., Wei C. 1,25-Dihydroxyvitamin D 3 and cisplatin synergistically induce apoptosis and cell cycle arrest in gastric cancer cells. Int J Mol Med 2014; 33: 1177–1184.
42. Enane F. O., Saunthararajah Y., Korc M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis. 2018; 9 (9): 912.
43. Jogi A., Vaapil M., Johansson M., Pahlman S. Cancer cell Differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci. 2012; 117 (2): 217–24.
44. Nowak D., Stewart D., Koeffler H. P. Differentiation therapy of leukemia: 3 Decades of Development. Blood. 2009; 113 (16): 3655–65.
45. Miyaura C., Abe E., Kuribayashi T., Tanaka H., Konno K., Nishii Y., Suda T. 1 alpha,25-Dihydroxyvitamin D 3 induces Differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun. 1981; 102 (3): 937–43.
46. Hlubek F., Brabletz T., Budczies J., Pfeiffer S., Jung A., Kirchner T. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer. 2007; 121 (9): 1941–88.
47. Pendas-Franco N., Garcia J. M., Peña C., Valle N., Palmer H. G., Heinaniemi M., Carlberg C., Jimenez B., Bonilla F., Munoz A., Gonzalez-Sancho J.M. DICKKOPF-4 is induced by TCF/beta-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1alpha,25-dihydroxyvitamin D 3. Oncogene. 2008; 27 (32): 4467–77.
48. Pendas-Franco N., Aguilera O., Pereira F., Gonzalez-Sancho J.M., Munoz A. Vitamin D and Wnt/beta-catenin pathway in colon cancer: role and regulation of DICKKOPF genes. Anticancer Res. 2008; 28 (5A): 2613–23.
49. Palmer H. G., Gonzalez-Sancho J.M., Espada J., Berciano M. T., Puig I., Baulida J., Quintanilla M., Cano A., De Herreros A. G., Lafarga M., Munoz A. Vitamin D(3) promotes the Differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol. 2001; 154 (2): 369–87.
50. Schwartz G. G., Eads D., Rao A., Cramer S. D., Willingham M. C., Chen T. C., Jamieson D. P., Wang L., Burnstein K. L., Holick M. F., Koumenis C. Pancreatic cancer cells express 25-hydroxyvitamin D-1 alpha-hydroxylase and their proliferation is inhibited by the prohormone 25-hydroxyvitamin D 3. Carcinogenesis. 2004; 25 (6): 1015–26.
51. Albrechtsson E., Jonsson T., Moller S., Hoglund M., Ohlsson B., Axelson J. Vitamin D receptor is expressed in pancreatic cancer cells and a vitamin D 3 analogue Decreases cell number. Pancreatology. 2003; 3 (1): 41–6.
52. Bulle A., Lim K. H. Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Sig Transduct Target Ther. 2020; 5: 249.
53. Sherman M. H., Yu R. T., Engle D. D. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014; 159 (1): 80–93.
54. Kong F., Li L., Wang G., Deng X., Li Z., Kong X. VDR signaling inhibits cancer-associated-fibroblasts’ release of exosomal miR-10a-5p and limits their supportive effects on pancreatic cancer cells. Gut. 2019; 68 (5): 950–951.
55. Ferrer-Mayorga G., Gomez-López G., Barbachano A., Fernandez-Barral A., Pena C., Pisano D. G., Cantero R., Rojo F., Munoz A., Larriba M. J. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut. 2017; 66 (8): 1449–1462.
56. Bray F., Colombet M., Mery L., Pineros M., Znaor A., Zanetti R., Ferlay. J. Cancer Incidence in Five Continents. IARC Scientific Publicaitons. 2007; 9.
57. Mohr S. B., Garland C. F., Gorham E. D., Grant W. B., Garland F. C. Ultraviolet B irradiance and vitamin D status are inversely associated with incidence rates of pancreatic cancer worldwide. Pancreas. 2010; 39 (5): 669–74.
58. Kinoshita S., Wagatsuma Y., Okada M. Geographical Distribution for malignant neoplasm of the pancreas in relation to selected climatic factors in Japan. Int J Health Geogr. 2007; 6: 34.
59. Wolpin B. M., Ng K., Bao Y. Plasma 25-hydroxyvitamin D and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2012; 21 (1): 82–91.
60. Liu Y., Wang X., Sun X., Lu S., Liu S. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine (Baltimore). 2018; 97 (13): e0114.
61. Zhang X., Huang X. Z., Chen W. J. Plasma 25-hydroxyvitamin D levels, vitamin D intake, and pancreatic cancer risk or mortality: a meta-analysis. Oncotarget. 2017; 8 (38): 64395–64406.
62. Waterhouse M., Risch H. A., Bosetti C., Anderson K. E., Petersen G. M., Bamlet W. R., Cotterchio M., Cleary S. P., Ibiebele T. I., La Vecchia C., Skinner H. G., Strayer L., Bracci P. M., Maisonneuve P., Bueno-de-Mesquita H.B., Zaton Ski W., Lu L., Yu H., Janik-Koncewicz K., Polesel J., Serraino D., Neale R. E. Pancreatic Cancer Case–Control Consortium (PanC 4). Vitamin D and pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium. Ann Oncol. 2015; 26 (8): 1776–83.
63. Maestro B., Davila N., Carranza M. C., Calle C. Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol. 2003; 84 (2–3): 223–30.
64. Stolzenberg-Solomon R.Z., Graubard B. I., Chari S. Insulin, Glucose, Insulin Resistance, and Pancreatic Cancer in Male Smokers. JAMA. 2005; 294 (22): 2872–2878.
65. Lappe J. M., Travers-Gustafson D., Davies K. M., Recker R. R., Heaney R. P. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr. 2007; 85 (6): 1586–91.
66. Blanke C. D., Beer T. M., Todd K., Mori M., Stone M., Lopez C. Phase II study of calcitriol-enhanced Docetaxel in patients with previously untreated metastatic or locally advanced pancreatic cancer. Invest New Drugs. 2009; 27 (4): 374–8.
67. Light B. W., Yu W. D., McElwain M.C., Russell D. M., Trump D. L., Johnson C. S. Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res. 1997; 57 (17): 3759–64.
68. Zhang X., Huang X. Z., Chen W. J., Wu J., Chen Y., Wu C. C., Wang Z. N. Plasma 25-hydroxyvitamin D levels, vitamin D intake, and pancreatic cancer risk or mortality: a meta-analysis. Oncotarget. 2017 Jun 29; 8 (38): 64395–64406.
69. Melamed M. L., Manson J. E. Vitamin D and cardiovascular Disease and cancer: not too much and not too little? The need for clinical trials. Womens Health (Lond). 2011; 7 (4): 419–424.
70. Vashi P. G., Trukova K., Lammersfeld C. A., Braun D. P., Gupta D. Impact of oral vitamin D supplementation on serum 25-hydroxyvitamin D levels in oncology. Nutr J. 2010; 9: 60.
71. Tuohimaa P., Lou Y. R. Optimal serum calcidiol concentration for cancer prevention. Anticancer Res. 2012; 32 (1): 373–81.
72. Chiang K. Chen T. Vitamin D for the prevention and treatment of pancreatic cancer. World J Gastroenterol. 2009; 15 (27): 3349–3354.
73. Juiz N., Elkaoutari A., Bigonnet M., Gayet O., Roques J., Nicolle R. Basal-like and classical cells coexist in pancreatic cancer revealed by single-cell analysis on biopsy-derived pancreatic cancer organoids from the classical subtype. FASEB J. 2020; 34: 12214–28.
74. Shi Y., Gao W., Lytle N. K., Huang P., Yuan X., Dann A. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019; 569: 131–5.
75. Sainz B. Jr., Alcala S., Garcia E., Sanchez-Ripoll Y., Azevedo M., Cioffi M. Microenvironmental hCAP‑18/LL‑37 promotes pancreatic Ductal adenocarcinoma by activating its cancer stem cell compartment. Gut. 2015; 64: 1921–35.
76. Bigelsen S. Evidence-based complementary treatment of pancreatic cancer: a review of adjunct therapies including paricalcitol, hydroxychloroquine, intravenous vitamin C, statins, metformin, curcumin, and aspirin. Cancer Manag Res. 2018; 10: 2003–18.
77. Tan E., El-Rayes B. Pancreatic cancer and immunotherapy: resistance mechanisms and proposed solutions. J Gastrointest Cancer. 2019; 50: 1–8.
78. Andricovich J., Perkail S., Kai Y., Casasanta N., Peng W., Tzatsos A. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell. 2018; 33: 512–26.
Review
For citations:
Moiseenko V.E., Pavlovsky A.V., Popov S.A., Kovenko A.E., Solovyova L.A., Semenov K.N., Sharoiko V.V., Granov D.A. Vitamin D and pancreatic cancer: Impact on oncogenesis, prospects for use in diagnosis and treatment. Medical alphabet. 2022;1(5):29-37. (In Russ.) https://doi.org/10.33667/2078-5631-2022-5-29-37