Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Саркопения при нейродегенеративных заболеваниях

https://doi.org/10.33667/2078-5631-2021-36-52-57

Полный текст:

Аннотация

Саркопения – это прогрессирующее генерализованное заболевание мышечной ткани, ассоциированное с повышенным риском падений, переломов, ограничением физических возможностей и смертностью. Критерии саркопении основаны на оценке триады симптомов – снижении мышечной массы, силы мышц и нарушении физического состояния. Наиболее распространенными методами диагностики заболевания являются динамометрия сжатия кисти, денситометрия, биоимпедансометрия, измерение скорости ходьбы. Данные методики имеют высокую точность и прогностическую ценность, однако не всегда применимы к пациентам с неврологическими нарушениями. В статье обсуждаются особенности выявления саркопении в неврологической практике, а также ее связь с нейродегенеративными заболеваниями – болезнью Альцгеймера, болезнью Паркинсона, боковым амиотрофическим склерозом. Имея ряд общих патофизиологических механизмов, каждое из заболеваний характеризуется специфическим фенотипом мышечной атрофии. Высокая встречаемость симптомов саркопении при нейродегенеративных заболеваниях и общность механизмов их развития позволяет говорить о саркопении как о перекрестном или оверлап-синдроме нейродегенеративных заболеваний.

Об авторах

М. А. Коротыш
ООО «Медико-генетический центр „Геном“»
Россия

Коротыш Мария Анатольевна, врач-невролог, нейропсихолог

Нижний Новгород



С. Н. Светозарский
ФБУЗ «Приволжский окружной медицинский центр» ФМБА России
Россия

Светозарский Сергей Николаевич, к. м. н., врач-офтальмолог офтальмологического отделения

Нижний Новгород



С. В. Копишинская
ФГБОУ ВО «Кировский государственный медицинский университет» Минздрава России
Россия

Копишинская Светлана Васильевна, к. м. н., доцент кафедры неврологии,
нейрохирургии и нейрореабилитации

Киров



Список литературы

1. Rosenberg I. Summary comments. Am J Clin Nutr. 1989; 50 (5): 1231–1233. https://doi.org/10.1093/ajcn/50.5.1231

2. Anker S, Morley J, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016; 7 (5): 512–514. https://doi.org/10.1002/jcsm.12147

3. Patel H, Syddall H, Jameson K et al. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS). Age Ageing. 2013; 42 (3): 378–384. https://doi.org/10.1093/ageing/afs197

4. Moreira V, Perez M, Lourenço R. Prevalence of sarcopenia and its associated factors: the impact of muscle mass, gait speed, and handgrip strength reference values on reported frequencies. Clinics. 2019; 74: e477. https://doi.org/10.6061/clinics/2019/e477

5. Cruz-Jentoft A, Landi F, Schneider S et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014; 43 (6): 748–759. https://doi.org/10.1093/ageing/afu115

6. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. Journal of Diabetes & Metabolic Disorders. 2017; 16 (1): 21. https://doi.org/10.1186/s40200–017–0302-x

7. Hirani V, Blyth F, Naganathan V et al. Sarcopenia Is Associated with Incident Disability, Institutionalization, and Mortality in Community-Dwelling Older Men: The Concord Health and Ageing in Men Project. J Am Med Dir Assoc. 2015; 16 (7): 607–613. https://doi.org/10.1016/j.jamda.2015.02.006

8. Bianchi L, Ferrucci L, Cherubini A et al. The Predictive Value of the EWGSOP Definition of Sarcopenia: Results from the InCHIANTI Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2015; 71 (2): 259–264. https://doi.org/10.1093/gerona/glv129

9. Cesari M, Rolland Y, Abellan Van Kan G et al. Sarcopenia-Related Parameters and Incident Disability in Older Persons: Results From the ‘Invecchiare in Chianti’ Study. The Journals of Gerontology: Series A. 2014; 70 (4): 457–463. https://doi.org/10.1093/gerona/glu181

10. Landi F, Liperoti R, Russo A et al. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clinical Nutrition. 2012; 31 (5): 652–658. https://doi.org/10.1016/j.clnu.2012.02.007

11. Zhang X, Huang P, Dou Q et al. Falls among older adults with sarcopenia dwelling in nursing home or community: A meta-analysis. Clinical Nutrition. 2020; 39 (1): 33–39. https://doi.org/10.1016/j.clnu.2019.01.002

12. Zhang X, Zhang W, Wang C, Tao W, Dou Q, Yang Y. Sarcopenia as a predictor of hospitalization among older people: a systematic review and meta-analysis. BMC Geriatr. 2018; 18 (1): 188. https://doi.org/10.1186/s12877–018–0878–0

13. Liu P, Hao Q, Hai S, Wang H, Cao L, Dong B. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: A systematic review and meta-analysis. Maturitas. 2017; 103: 16–22. https://doi.org/10.1016/j.maturitas.2017.04.007

14. Bayraktar E, Tosun Tasar P, Binici D, Karasahin O, Timur O, Sahin S. Relationship between Sarcopenia and Mortality in Elderly Inpatients. Eurasian J Med. 2020; 52 (1): 298–33. https://doi.org/10.5152/eurasianjmed.2020.19214

15. Cruz-Jentoft A, Baeyens J, Bauer J et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010; 39 (4): 412–423. https://doi.org/10.1093/ageing/afq034

16. Cruz-Jentoft A, Bahat G, Bauer J et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (1): 16–31. https://doi.org/10.1093/ageing/afy169

17. Fielding R, Vellas B, Evans W et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc. 2011; 12 (4): 249–256. https://doi.org/10.1016/j.jamda.2011.01.003

18. Dam T, Peters K, Fragala M et al. An Evidence-Based Comparison of Operational Criteria for the Presence of Sarcopenia. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2014; 69 (5): 584–590. https://doi.org/10.1093/gerona/glu013

19. Bhasin S, Travison T, Manini T et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc. 2020. https://doi.org/10.1111/jgs.16372

20. Fuggle N, Shaw S, Dennison E, Cooper C. Sarcopenia. Best Practice & Research Clinical Rheumatology. 2017; 31 (2): 218–242. https://doi.org/10.1016/j.berh.2017.11.007

21. Jung H, Lee Y, Kim M, Uhm K, Lee J. Suggested Assessments for Sarcopenia in Patients with Stroke Who Can Walk Independently. Ann Rehabil Med. 2020; 44 (1): 20–37. https://doi.org/10.5535/arm.2020.44.1.20

22. Shaw S, Dennison E, Cooper C. Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse. Calcif Tissue Int. 2017; 101 (3): 229–247. https://doi.org/10.1007/s00223–017–0277–0

23. Kim K, Jang H, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016; 31 (4): 643–650. https://doi.org/10.3904/kjim.2016.015

24. Sergi G, De Rui M, Veronese N et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clinical Nutrition. 2015; 34 (4): 667–673. https://doi.org/10.1016/j.clnu.2014.07.010

25. Leong D, Teo K, Rangarajan S et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. The Lancet. 2015; 386 (9990): 266–273. https://doi.org/10.1016/s0140–6736(14)62000–6

26. Ibrahim K, May C, Patel H, Baxter M, Sayer A, Roberts H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot Feasibility Study. 2016; 2 (1): 27. https://doi.org/10.1186/s40814–016–0067-x

27. Beaudart C, McCloskey E, Bruyère O et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016; 16 (1): 170. https://doi.org/10.1186/s12877–016–0349–4

28. Steiber N. Strong or Weak Handgrip? Normative Reference Values for the German Population across the Life Course Stratified by Sex, Age, and Body Height. PLoS ONE. 2016; 11 (10): e0163917. https://doi.org/10.1371/journal.pone.0163917

29. Roberts H, Denison H, Martin H et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011; 40 (4): 423–429. https://doi.org/10.1093/ageing/afr051

30. Beaudart C, Rolland Y, Cruz-Jentoft A et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice. Calcif Tissue Int. 2019; 105 (1): 1–14. https://doi.org/10.1007/s00223–019–00545-w

31. Osuka Y, Kim H, Kawai H et al. Sarcoscore: A Novel Approach for Assessing Sarcopenia and Functional Disability in Older Adults. J Clin Med. 2020; 9 (3): 692. https://doi.org/10.3390/jcm9030692

32. Beaudart C, Biver E, Reginster J et al. Validation of the SarQoL®, a specific health-related quality of life questionnaire for Sarcopenia. J Cachexia Sarcopenia Muscle. 2016; 8 (2): 238–244. https://doi.org/10.1002/jcsm.12149

33. Malmstrom T, Miller D, Simonsick E, Ferrucci L, Morley J. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2015; 7 (1): 28–36. https://doi.org/10.1002/jcsm.12048

34. Pinotti E, Montuori M, Borrelli V, Giuffrè M, Angrisani L. Sarcopenia: What a Surgeon Should Know. Obes Surg. 2020. https://doi.org/10.1007/s11695–020–04516–1

35. Fried L, Tangen C, Walston J et al. Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2001; 56 (3): M146–M157. https://doi.org/10.1093/gerona/56.3.m146

36. Vanhoutte G, van de Wiel M, Wouters K et al. Cachexia in cancer: what is in the definition? BMJ Open Gastroenterol. 2016; 3 (1): e000097. https://doi.org/10.1136/bmjgast-2016–000097

37. Thomas D. Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clinical Nutrition. 2007; 26 (4): 389–399. https://doi.org/10.1016/j.clnu.2007.03.008

38. El Ghoch M, Calugi S, Grave R. Sarcopenic Obesity: Definition, Health Consequences and Clinical Management. Open Nutr J. 2018; 12 (1): 70–73. https://doi.org/10.2174/1874288201812010070

39. Polyzos S, Margioris A. Sarcopenic obesity. Hormones. 2018; 17 (3): 321–331. https://doi.org/1007/s42000–018–0049-x

40. Noh H, Oh S, Song H et al. Relationships between cognitive function and body composition among community-dwelling older adults: a cross-sectional study. BMC Geriatr. 2017; 17 (1): 259. https://doi.org/10.1186/s12877–017–0651–9

41. Bertrand A, Fournier K, Wick Brasey M, Kaiser M, Frischknecht R, Diserens K. Reliability of maximal grip strength measurements and grip strength recovery following a stroke. Journal of Hand Therapy. 2015; 28 (4): 356–363. https://doi.org/10.1016/j.jht.2015.04.004

42. Bohannon R. Adequacy of hand-grip dynamometry for characterizing upper limb strength after stroke. Isokinet Exerc Sci. 2004; 12 (4): 263–265. https://doi.org/10.3233/ies-2004–0184

43. Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H. Sarcopenia and Muscle Functions at Various Stages of Alzheimer Disease. Front Neurol. 2018; 9: 710. https://doi.org/10.3389/fneur.2018.00710

44. Sugimoto T, Ono R, Murata S et al. Prevalence and associated factors of sarcopenia in elderly subjects with amnestic mild cognitive impairment or Alzheimer disease. Curr Alzheimer Res. 2016; 13 (6): 718–726. https://doi.org/10.2174/1567205013666160211124828

45. Ohta Y, Nomura E, Hatanaka N et al. Female dominant association of sarcopenia and physical frailty in mild cognitive impairment and Alzheimer’s disease. Journal of Clinical Neuroscience. 2019; 70: 96–101. https://doi.org/10.1016/j.jocn.2019.08.062

46. Michaud M, Balardy L, Moulis G et al. Proinflammatory Cytokines, Aging, and Age-Related Diseases. J Am Med Dir Assoc. 2013; 14 (12): 877–882. https://doi.org/10.1016/j.jamda.2013.05.009

47. Tolea M, Galvin J. Sarcopenia and impairment in cognitive and physical performance. Clin Interv Aging. 2015: 663. https://doi.org/10.2147/cia.s76275

48. del Campo N, Payoux P, Djilali A et al. Relationship of regional brain β-amyloid to gait speed. Neurology. 2015; 86 (1): 36–43. https://doi.org/10.1212/wnl.0000000000002235

49. Soto M, Secher M, Gillette-Guyonnet S et al. Weight Loss and Rapid Cognitive Decline in Community-Dwelling Patients with Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2012; 28 (3): 647–654. https://doi.org/10.3233/jad-2011–110713

50. Kim J, Choi K, Cho S et al. Association of muscle and visceral adipose tissues with the probability of Alzheimer’s disease in healthy subjects. Sci Rep. 2019; 9 (1): 949. https://doi.org/10.1038/s41598–018–37244–9

51. Vetrano D, Pisciotta M, Laudisio A et al. Sarcopenia in Parkinson Disease: Comparison of Different Criteria and Association with Disease Severity. J Am Med Dir Assoc. 2018; 19 (6): 523–527. https://doi.org/10.1016/j.jamda.2017.12.005

52. Lee C, Chen H, Chen P et al. Correlation between Executive Network Integrity and Sarcopenia in Patients with Parkinson’s Disease. Int J Environ Res Public Health. 2019; 16 (24): 48–84. https://doi.org/10.3390/ijerph16244884

53. Lima D, de Almeida S, Bonfadini J et al. Clinical correlates of sarcopenia and falls in Parkinson’s disease. PLoS ONE. 2020; 15 (3): e0227238. https://doi.org/10.1371/journal.pone.0227238

54. Peball M, Mahlknecht P, Werkmann M et al. Prevalence and Associated Factors of Sarcopenia and Frailty in Parkinson’s Disease: A Cross-Sectional Study. Gerontology. 2018; 65 (3): 216–228. https://doi.org/10.1159/000492572

55. Drey M, Hasmann S, Krenovsky J et al. Associations between Early Markers of Parkinson’s Disease and Sarcopenia. Front Aging Neurosci. 2017; 9: 53. https://doi.org/10.3389/fnagi.2017.00053

56. Drey M, Krieger B, Sieber C et al. Motoneuron Loss Is Associated With Sarcopenia. J Am Med Dir Assoc. 2014; 15 (6): 435–439. https://doi.org/10.1016/j.jamda.2014.02.002

57. Kwan P. Sarcopenia, a Neurogenic Syndrome? J Aging Res. 2013; 2013: 1–10. https://doi.org/10.1155/2013/791679

58. Krenovsky J, Bötzel K, Ceballos-Baumann A et al. Interrelation between Sarcopenia and the Number of Motor Neurons in Patients with Parkinsonian Syndromes. Gerontology. 2020: 1–7. https://doi.org/10.1159/000505590

59. Pradhan S, Kelly V. Quantifying physical activity in early Parkinson disease using a commercial activity monitor. Parkinsonism Relat Disord. 2019; 66: 171–175. https://doi.org/10.1016/j.parkreldis.2019.08.001

60. Ozer F, Akın S, Gultekin M, Zararsız G. Sarcopenia, dynapenia, and body composition in Parkinson’s disease: are they good predictors of disability? A case-control study. Neurological Sciences. 2019; 41 (2): 313–320. https://doi.org/10.1007/s10072–019–04073–1

61. Tan A, Hew Y, Lim S et al. Altered body composition, sarcopenia, frailty, and their clinico-biological correlates, in Parkinson’s disease. Parkinsonism Relat Disord. 2018; 56: 58–64. https://doi.org/10.1016/j.parkreldis.2018.06.020

62. Chiò A, Logroscino G, Traynor B et al. Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature. Neuroepidemiology. 2013; 41 (2): 118–130. https://doi.org/10.1159/000351153

63. Cappello V, Francolini M. Neuromuscular Junction Dismantling in Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2017; 18 (10): 2092. https://doi.org/10.3390/ijms18102092

64. Moloney E, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci. 2014; 8: 252. https://doi.org/10.3389/fnins.2014.00252

65. Uitti R, Berry K, Yasuhara O et al. Neurodegenerative ‘overlap’ syndrome: Clinical and pathological features of Parkinson’s disease, motor neuron disease, and Alzheimer’s disease. Parkinsonism Relat Disord. 1995; 1 (1): 21–34. https://doi.org/10.1016/1353–8020(95)00004-p

66. Drey M, Grösch C, Neuwirth C, Bauer J, Sieber C. The Motor Unit Number Index (MUNIX) in sarcopenic patients. Exp Gerontol. 2013; 48 (4): 381–384. https://doi.org/10.1016/j.exger.2013.01.011


Рецензия

Для цитирования:


Коротыш М.А., Светозарский С.Н., Копишинская С.В. Саркопения при нейродегенеративных заболеваниях. Медицинский алфавит. 2021;(36):52-57. https://doi.org/10.33667/2078-5631-2021-36-52-57

For citation:


Korotysh M.A., Svetozarskiy S.N., Kopishinskaia S.V. Sarcopenia in neurodegenerative disorders. Medical alphabet. 2021;(36):52-57. (In Russ.) https://doi.org/10.33667/2078-5631-2021-36-52-57

Просмотров: 26


ISSN 2078-5631 (Print)