Preview

Medical alphabet

Advanced search

Clinical and neurophysiological correlations in post-Covid‑19 patients and rationale for pathogenetic therapy

https://doi.org/10.33667/2078-5631-2021-36-7-11

Abstract

Clinical and neurological, neurophysiological, and neuropsychological examination of 50 patients aged 50–65 y. o. with an experience of COVID‑19 infection within the last 3 to 6 months, revealed pathological changes in the central nervous system in the form of cerebrastenic and autonomic disorders, motor disorders, vestibulopathy symptoms, which occurred in various combinations, with astheno-vegetative syndrome as obligate. Cognitive impairments were detected in 26% of patients; the mental fatigability index was 1.055 ± 0.124; a high level of situational anxiety was noted in 35% of patients, and a high level of personal anxiety in 50 % of patients with the experience of COVID‑19. The study of brain biopotentials revealed moderate diffuse changes (18%) and irritative disorders on the part of hypothalamic (69 %) and diencephalic structures (20%). All of the above may indicate that, regardless of the form of coronavirus infection occurred in humans, i. e., latent, mild, moderate or severe, one of the targets of the pathological impact of COVID‑19 virus is the median structures of the brain responsible for autonomic and cognitive functions. Nevertheless, in our opinion, these disorders are associated not with a direct pathological effect, but are mediated mainly by circulatory disorders in the microcirculatory bed due to endothelial damage and are rather functional disorders on the part of the central nervous system. This provides the grounds for the selection of pathogenetic therapy aimed at stabilizing the functional state of neurons, and one of the drugs of choice may be citicoline (Noocyl), the action of which is associated with reinforcing the cell membrane of the neuron and normalizing bioelectric processes.

About the Authors

M. G. Sokolova
North-Western State Medical University n. a. I. I. Mechnikov; Institute for Physiology n. a. I. P. Pavlov
Russian Federation

Sokolova Maria G., DM Sci (habil.), associate professor at Dept of Neurology n. a. acad. S. N. Davidenkov

Saint Petersburg



M. A. Privalova
North-Western State Medical University n. a. I. I. Mechnikov; Hospital for Veterans of Wars
Russian Federation

Privalova Maria A., PhD Med, head of Neurological Dept for Patients with Stroke

Saint Petersburg



V. A. Shavurov
North-Western State Medical University n. a. I. I. Mechnikov
Russian Federation

Shavurov Vadim A., postgraduate student of Dept of Neurology n. a. acad. S. N. Davidenkov

Saint Petersburg



O. Yu. Shtakelberg
North-Western State Medical University n. a. I. I. Mechnikov
Russian Federation

Shtakelberg Olga Yu., DM Sci (habil.), professor at Dept of Psychiatry

Saint Petersburg



E. V. Lopatina
Institute for Physiology n. a. I. P. Pavlov; First Saint Petersburg State Medical University n. a. academician I. P. Pavlov
Russian Federation

Lopatina Ekaterina V., Doctor Bio Sci (habil.), leading researcher at Laboratories of Physiology of Cardiovascular System and Lymphalogy

Saint Petersburg



N. A. Pasatetskaya
First Saint Petersburg State Medical University n. a. academician I. P. Pavlov
Russian Federation

Pasatetskaya Natalya A., associate professor at Dept of Normal Physiology

Saint Petersburg



Yu. I. Polyakov
North-Western State Medical University n. a. I. I. Mechnikov; Institute for Physiology n. a. I. P. Pavlov
Russian Federation

Polyakov Yury I., PhD Med, professor at Dept of Psychiatry

Saint Petersburg



References

1. Bereczki D., Stang R., Böjti P., Kovács T. Neurological aspects of the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Ideggyogy Sz. 2020; (73): 171–175. DOI: 10.18071/isz.73.0171.

2. Zubair А., McAlpine L.S., Gardin Т., Farhadian S., Kuruvilla D. E., Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease. 2019. JAMA Neurol. 2020; 77 (8): 1018–1027. DOI: 10.1001/jamaneurol.2020.2065.

3. Yachou Y., Idrissi A. Еl., Belapasov V., Benali S. A. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID‑19 patients. Neurol Sci. 2020; 41 (10): 2657–2669. DOI: 10.1007/s10072–020–04575–3.

4. Jarrahi A., Ahluwalia M., Khodadadi H., Salles E. da S.L., Kolhe R., Hess D. C. Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation. 2020; 17 (1): 286. DOI: 10.1186/s12974–020–01957–4.

5. Montalvan V., Lee J., Bueso T., De Toledo J., Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg. 2020; 194: 105921. DOI: 10.1016/j.clineuro.2020.105921.

6. Maury А., Lyoubi А., Peiffer-Smadja N., de Broucker T., Meppiel E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses. A narrative review for clinicians Rev Neurol (Paris). 2021; 177 (1–2): 51–64. DOI: 10.1016/j.neurol.2020.10.001.

7. Joseph R. Berger. COVID-19 and the nervous system. J Neurovirol. 2020 Apr; 26 (2): 143–148. DOI: 10.1007/s13365–020–00840–5.

8. Kaushik P., Kaushik M., Parveen S., Tabassum H., Parvez S. Cross-Talk Between Key Players in Patients with COVID-19 and Ischemic Stroke: A Review on Neurobiological Insight of the Pandemic. Mol Neurobiol. 2020; 57 (12): 4921–4928. DOI: 10.1007/s12035–020–02072–4.

9. Barinov A. N., Moshkhoeva L. S., Parkhomenko E. V., Emikh E. V., Yastrebtseva I. P. Clinical features, pathogenesis and treatment of long-haul COVID-19 impact on nervous system. Medical Alphabet. 2021; (3): 14–22. (In Russ.) https://doi.org/10.33667/2078–5631–2021–3–14–22

10. Mendelson М., Nel J., Blumberg L., Madhi S. A., Dryden М., Stevens W., Venter F. W.D. Long-COVID: An evolving problem with an extensive impact. S Afr Med J. 2020; 111 (1): 10–12. DOI: 10.7196/SAMJ.2020.v111i11.15433.

11. Sher L. Post-COVID syndrome and suicide risk. QJM. 2021; 114 (2): 95–98. DOI: 10.1093/qjmed/hcab007.

12. Miners S., Kehoe P. G., Love S. Cognitive impact of COVID-19: looking beyond the short term. Affiliations expand. Alzheimers Res Ther. 2020; 12 (1): 170. DOI: 10.1186/s13195–020–00744-w.

13. Zhou H., Lu S., Chen J., Wei N., Wang D. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res.2020; 129: 98–102. DOI: 10.1016/j.jpsychires.2020.06.022.

14. Akhmetzyanova A. I. Clinical Psychology Workshop. Study guide. M.: Shkolnaya pressa, 2013. (In Russ.)

15. Malkina-Pykh I. G. Psychosomatics: A Handbook of Practical Psychologist. M.: Eksmo, 2005. (In Russ.)

16. Ritchie K., Chan D., Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020; 2(2): fcaa069. DOI: 10.1093/braincomms/fcaa069.

17. Lobzin S. V., Sokolova M. G., Nalkin S. A. Influence of dysfunction of the cholinergic system of the brain on the state of cognitive functions. Bulletin of the North-Western State Medical University named after I. I. Mechnikov. 2017; 9 (4): 53–58. (In Russ.)

18. Vartanov AV, Kozlovskiy SA, Skvortsova VB, et al. Human memory and anatomic features of the hippocampus. Vestnik Moskovskogo universiteta. Seriya 14: Psikhologiya. 2009; (4): 3–16. (In Russ.)

19. Ramage Amy E. Potential for Cognitive Communication Impairment in COVID-19 Survivors: A Call to Action for Speech-Language Pathologists. Am J Speech Lang Pathol. 2020; 29 (4): 1821–1832. DOI: 10.1044/2020_AJSLP-20–00147.

20. Bodro М., Compta Y., Sánchez-Valle R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol Neuroimmunol Neuroinflamm. 2020; 8 (1): e923. DOI: 10.1212/NXI.0000000000000923.

21. Stefano G. B., Ptacek R., Ptackova H., Martin A., Kream R. M. Selective Neuronal Mitochondrial Targeting in SARS-CoV-2 Infection Affects Cognitive Processes to Induce 'Brain Fog' and Results in Behavioral Changes that Favor Viral Survival. Med Sci Monit. 2021; 27: e930886. DOI: 10.12659/MSM.930886.

22. Gheblawi М., Wang К., Viveiros А., et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE 2. Circ Res. 2020; 126 (10): 1456–1474. DOI: 10.1161/circresaha.120.317015.

23. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE 2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203: 631–7. https://doi.org/10.1002/path.1570

24. Divani А. А., Andalib S., Napoli M. Di., et.al. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J Stroke Cerebrovasc Dis. 2020; 29 (8): 104941. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104941.

25. Cheng H., Wang Y., Wang G.-Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020; 92 (7): 726–730. DOI: 10.1002/jmv.25785.

26. Román G. C., Spencer P. S., Reis J. The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. J Neurol Sci. 2020; 414: 116884. DOI: 10.1016/j.jns.2020.116884.

27. Ashutosh Kumar, Ravi K Narayan, Chiman Kumari, Muneeb A Faiq, Maheswari Kulandhasamy, Kamla Kant, Vikas Pareek. SARS-CoV-2 cell entry receptor ACE 2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med Hypotheses. 2020; 145: 110320. DOI: 10.1016/j.mehy.2020.110320.

28. Maury A., Lyoubi A., Peiffer-Smadja N., Broucker T., Meppiel E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev Neurol (Paris). 2021; 177 (1–2): 51–64. DOI: 10.1016/j.neurol.2020.10.001.

29. Lanzoni G., Linetsky E., Correa D., Alvarez R. A., Marttos A. Cross-Talk Between Key Players in Patients with COVID-19 and Ischemic Stroke: A Review on Neurobiological Insight of the Pandemic. Mol Neurobiol.2020; 57 (12): 4921–4928. DOI: 10.1007/s12035–020–02072–4.

30. V. A. Golovacheva Neurometabolic therapy for the recovery period of stroke. Effective pharmacotherapy. 2020; 16: 28–34.

31. Ostroumova O. D., Ostroumova T. M., Golovina O. V. Stroke and COVID-19. Medical Alphabet. 2021; 9: 5–10.

32. Ostroumova T. M., Chernousov P. A., Kuznetsov I. V. Cognitive impairment in COVID-19 survivors. Nevrologiya, neiropsikhiatriya, psikhosomatika (Neurology, Neuropsychiatry, Psychosomatics). 2021; 13 (1): 126–130. DOI: 10.14412/2074–2711–2021–1–126–130.

33. Ostroumova O. D., Ostroumova T. M., Golovina O. V. Early signs of hypertension-mediated brain damage: case report and possibilities of citicoline. Medical Alphabet. 2020; 19: 34–38.


Review

For citations:


Sokolova M.G., Privalova M.A., Shavurov V.A., Shtakelberg O.Yu., Lopatina E.V., Pasatetskaya N.A., Polyakov Yu.I. Clinical and neurophysiological correlations in post-Covid‑19 patients and rationale for pathogenetic therapy. Medical alphabet. 2021;(36):7-11. (In Russ.) https://doi.org/10.33667/2078-5631-2021-36-7-11

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)