Preview

Medical alphabet

Advanced search

Comorbidity of non-alcoholic fatty liver disease and cardiovascular disease: focus on ademetionine and ursodeoxycholic acid

https://doi.org/10.33667/2078-5631-2021-29-13-20

Abstract

Changes in the nature of the interaction of risk factors and global aging of the population have led to a rapid increase in patients with combined pathology, elevated to the rank of a new non-infectious epidemic. The previously existing ‘one disease, one patient’ paradigm is losing its relevance and no longer meets medical needs, therefore patients with comorbidities need a broader approach and individualized treatment regimens, which are currently not fully defined. According to modern concepts, the coexistence of pathogenetically and pathophysiologically interrelated two or more diseases in one individual is defined by the term ‘comorbidity’. The most common comorbidity phenotype is cardiometabolic. Of particular interest is the relationship between cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD), since both diseases are highly prevalent in the population and have common metabolic risk factors (obesity, diabetes mellitus, hypertension, and dyslipidemia). In addition, there is evidence that NAFLD is an independent risk factor for CVD, which suggests not only the presence of common pathogenetic mechanisms other than metabolic pathways, but also the likelihood that treatment of liver disease can reduce the burden of CVD. In this regard, this review comprehensively analyzes the relationship between NAFLD and CVD and discusses a possible therapeutic strategy, including the use of a combination of ademetionine with ursodeoxycholic acid.

About the Authors

O. A. Polyakova
Russian Medical Academy for Continuing Professional Education
Russian Federation

Polyakova Olga A., therapist, assistant at Dept of Therapy and Polymorbid Pathology 

Moscow



O. D. Ostroumova
Russian Medical Academy for Continuing Professional Education
Russian Federation

Ostroumova Olga D., DM Sci, professor, head of Dept of Therapy and Polymorbid Pathology 

Moscow



G. P. Kovaleva
Zagorskiye Dali’ Sanatorium
Russian Federation

Kovaleva Galina P., PhD Med, general practitioner

Moscow Region, Sergiev Posad District, Zagorskiye Dali, Russia



E. E. Pavleeva
Moscow State University of Medicine and Dentistry n.a. A.I. Evdokimov
Russian Federation

Pavleeva Elena E., PhD Med, assistant at Dept of Propedeutics of Internal Diseases and Gastroenterology

Moscow



References

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V; GBDNHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD2019 Study. Journal of the American College of Cardiology. 2020; 76 (25): 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

2. Palladino R, Tayu Lee J, Ashworth M, Triassi M, Millett C. Associations between multimorbidity, healthcare utilisation and health status: evidence from 16 European countries. Age Ageing. 2016; 45 (3): 431–435. https://doi.org/10.1093/ageing/afw044

3. Ording AG, Sørensen HT. Concepts of comorbidities, multiple morbidities, complications, and their clinical epidemiologic analogs. Clin Epidemiol. 2013; 5: 199–203. https://doi.org/10.2147/CLEP.S45305

4. Ryan A, Wallace E, O’Hara P, Smith SM. Multimorbidity and functional decline in community-dwelling adults: a systematic review. Health Qual Life Outcomes. 2015; 13: 168. https://doi.org/10.1186/s12955–015–0355–9

5. Kivimäki M, Kuosma E, Ferrie JE, et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health. 2017; 2 (6): e277–e285. https://doi.org/10.1016/S2468–2667(17)30074–9

6. Nunes BP, Flores TR, Mielke GI, Thumé E, Facchini LA. Multimorbidity and mortality in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr. 2016; 67: 130–138. https://doi.org/10.1016/j.archger.2016.07.008

7. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012; 380 (9836): 37–43. https://doi.org/10.1016/S0140–6736(12)60240–2

8. Rzewuska M, de Azevedo-Marques JM, Coxon D, et al. Epidemiology of multimorbidity within the Brazilian adult general population: Evidence from the 2013 National Health Survey (PNS2013). PLoS One. 2017; 12 (2): 1–13. https://doi.org/10.1371/journal.pone.0171813

9. Oganov R. G., Simanenkov V. I., Bakulin I. G., Bakulina N. V., Barbarash O. L., Boytsov S.A., Boldueva S.A., Garganeyeva N.P., Doshchitsin V.L., Karateev A.E., Kotovskaya Yu.V., Lila A. M., Lukyanov M. M., Morozova T. E., Pereverzev A. P., Petrova M. M., Pozdnyakov Yu.M., Syrov A. V., Tarasov A. V., Tkacheva O. N., Shalnova S.A. Comorbid pathology in clinical practice. Diagnostic and treatment algorithms. Cardiovascular therapy and prevention. 2019; 18 (1): 5–66. https://doi.org/10.15829/1728–8800–2019–1–5–66

10. World Health Organization. 10 facts about aging and health. Information bill. Access mode: https://www.who.int/news-room/fact-sheets/detail/10-facts-onageing-and-health. (September 16, 2021).

11. Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients. 2021; 13 (8): 1–50. https://doi.org/10.3390/nu13082830

12. Violan C, Foguet-Boreu Q, Flores-Mateo G, et al. Prevalence, determinants and patterns of multimorbidity in primary care: a systematic review of observational studies. PLoS One. 2014; 9 (7): 1–9. https://doi.org/10.1371/journal.pone.0102149

13. Jeong D, Kim J, Lee H, Kim DY, Lim H. Association of Cardiometabolic Multimorbidity Pattern with Dietary Factors among Adults in South Korea. Nutrients. 2020; 12 (9): 1–15. https://doi.org/10.3390/nu12092730

14. Dekker LH, de Borst MH, Meems LMG, de Boer RA, Bakker SJL, Navis GJ. The association of multimorbidity within cardio-metabolic disease domains with dietary patterns: A cross-sectional study in 129369 men and women from the Lifelines cohort. PLoS One. 2019; 14 (8): 1–13. https://doi.org/10.1371/journal.pone.0220368

15. Coste J, Valderas JM, Carcaillon-Bentata L. Estimating and characterizing the burden of multimorbidity in the community: A comprehensive multistep analysis of two large nationwide representative surveys in France. PLoS Med. 2021; 18 (4): 1–22. https://doi.org/10.1371/journal.pmed.1003584

16. Younossi ZM, Stepanova M, Afendy M, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol. 2011; 9 (6): 524–530. https://doi.org/10.1016/j.cgh.2011.03.020

17. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017; 66 (6): 1138–1153. https://doi.org/10.1136/gutjnl-2017–313884

18. Armstrong MJ, Adams LA, Canbay A, Syn WK. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014; 59 (3): 1174–1197. https://doi.org/10.1002/hep.26717

19. Söderberg C, Stål P, Askling J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010; 51 (2): 595–602. https://doi.org/10.1002/hep.23314

20. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015; 61 (5): 1547–1554. https://doi.org/10.1002/hep.27368

21. Brouwers MCGJ, Simons N, Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality. Diabetologia. 2020; 63 (2): 253–260. https://doi.org/10.1007/s00125–019–05024–3

22. Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep. 2021; 3 (4): 1–10. https://doi.org/10.1016/j.jhepr.2021.100305

23. Kim D, Kim WR. Nonobese Fatty Liver Disease. Clin Gastroenterol Hepatol. 2017; 15 (4): 474–485. https://doi.org/10.1016/j.cgh.2016.08.028

24. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012; 142 (4): 711–725. https://doi.org/10.1053/j.gastro.2012.02.003

25. Lechner K, Lorenz E, Drezner JA. The ‘heart’ of preventive cardiology: Lifestyle medicine for the treatment of cardiometabolic diseases. Eur J Prev Cardiol. 2020; 27 (19): 2069–2070. https://doi.org/10.1177/2047487319899107

26. Gepner Y, Shelef I, Schwarzfuchs D, et al. Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools: CENTRAL Magnetic Resonance Imaging Randomized Controlled Trial. Circulation. 2018; 137 (11): 1143–1157. https://doi.org/10.1161/CIRCULATIONAHA.117.030501.

27. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018; 75 (18): 3313–3327. https://doi.org/10.1007/s00018–018–2860–6

28. Lechner K, McKenzie AL, Kränkel N, et al. High-Risk Atherosclerosis and Metabolic Phenotype: The Roles of Ectopic Adiposity, Atherogenic Dyslipidemia, and Inflammation. Metab Syndr Relat Disord. 2020; 18 (4): 176–185. https://doi.org/10.1089/met.2019.0115

29. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020; 41 (24): 2313–2330. https://doi.org/10.1093/eurheartj/ehz962

30. Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev. 2016; 68 (1): 142–167. https://doi.org/10.1124/pr.114.010090

31. Zewinger S, Reiser J, Jankowski V, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020; 21 (1): 30–41. https://doi.org/10.1038/s41590–019–0548–1

32. Libby P, Everett BM. Novel Antiatherosclerotic Therapies. Arterioscler Thromb Vasc Biol. 2019; 39 (4): 538–545. https://doi.org/10.1161/atvbaha.118.310958

33. Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol. 2016; 785: 24–35. https://doi.org/10.1016/j.ejphar.2016.04.024.

34. Lai HTM, de Oliveira Otto MC, Lee Y, et al. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study. J Am Heart Assoc. 2019; 8 (22): 1–45. https://doi.org/10.1161/JAHA.119.012881.

35. Després JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012; 126 (10): 1301–1313. https://doi.org/10.1161/CIRCULATIONAHA.111.067264

36. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011; 301 (4): H1425–H1437. https://doi.org/10.1152/ajpheart.00376.2011

37. Antonopoulos AS, Margaritis M, Verheule S, et al. Mutual Regulation of Epicardial Adipose Tissue and Myocardial Redox State by PPAR-γ/Adiponectin Signalling. Circ Res. 2016; 118 (5): 842–855. https://doi.org/10.1161/circresaha.115.307856

38. Packer M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J Am Coll Cardiol. 2018; 71 (20): 2360–2372. https://doi.org/10.1016/j.jacc.2018.03.509

39. Gruzdeva OV, Akbasheva OE, Dyleva YA, et al. Adipokine and Cytokine Profiles of Epicardial and Subcutaneous Adipose Tissue in Patients with Coronary Heart Disease. Bull Exp Biol Med. 2017; 163 (5): 608–611. https://doi.org/10.1007/s10517–017–3860–5

40. Naftali-Shani N, Levin-Kotler LP, Palevski D, et al. Left Ventricular Dysfunction Switches Mesenchymal Stromal Cells Toward an Inflammatory Phenotype and Impairs Their Reparative Properties Via Toll-Like Receptor-4. Circulation. 2017; 135 (23): 2271–2287. https://doi.org/10.1161/circulationaha.116.023527

41. Stahl EP, Dhindsa DS, Lee SK, Sandesara PB, Chalasani NP, Sperling LS. Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019; 73 (8): 948–963. https://doi.org/10.1016/j.jacc.2018.11.050

42. Worm N. Beyond Body Weight-Loss: Dietary Strategies Targeting Intrahepatic Fat in NAFLD. Nutrients. 2020; 12 (5): 1–12. https://doi.org/10.3390/nu12051316

43. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018; 98 (4): 2133–2223. https://doi.org/10.1152/physrev.00063.2017

44. Agarwal SK, Norby FL, Whitsel EA, et al. Cardiac Autonomic Dysfunction and Incidence of Atrial Fibrillation: Results From 20 Years Follow-Up. J Am Coll Cardiol. 2017; 69 (3): 291–299. https://doi.org/10.1016/j.jacc.2016.10.059

45. Anand SS, Yi Q, Gerstein H, et al. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation. 2003; 108 (4): 420–425. https://doi.org/10.1161/01.CIR.0000080884.27358.49

46. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014; 10 (5): 293–302. https://doi.org/10.1038/nrendo.2014.29

47. De Carvalho SC, Muniz MT, Siqueira MD, et al. Plasmatic higher levels of homocysteine in non-alcoholic fatty liver disease (NAFLD). Nutr J. 2013; 12: 37. https://doi.org/10.1186/1475–2891–12–37

48. Francque SM, van der Graaff D, Kwanten WJ. Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J Hepatol. 2016; 65 (2): 425–443. https://doi.org/10.1016/j.jhep.2016.04.005

49. Tripodi A, Fracanzani AL, Primignani M, et al. Procoagulant imbalance in patients with non-alcoholic fatty liver disease. J Hepatol. 2014; 61 (1): 148–154. https://doi.org/10.1016/j.jhep.2014.03.013

50. Coulon S, Francque S, Colle I, et al. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine. 2012; 59 (2): 442–449. https://doi.org/10.1016/j.cyto.2012.05.001

51. Lauridsen BK, Stender S, Kristensen TS, et al. Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279013 individuals. Eur Heart J. 2018; 39 (5): 385–393. https://doi.org/10.1093/eurheartj/ehx662

52. Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019; 73 (16): 2089–2105. https://doi.org/10.1016/j.jacc.2019.03.024

53. Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020; 17 (5): 279–297. https://doi.org/10.1038/s41575–020–0269–9

54. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018; 67 (1): 328–357. https://doi.org/10.1002/hep.29367

55. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016; 64 (6): 1388–1402. https://doi.org/10.1016/j.jhep.2015.11.004

56. Kasper P, Martin A, Lang S, et al. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol. 2021; 110 (7): 921–937. https://doi.org/10.1007/s00392–020–01709–7

57. Lazebnik L.B., Golovanova E.V., Turkina S.V., Raikhelson K.L., Okovity S.V., Drapkina O.M., Maev I.V., Martynov A.I., Roitberg G.E., Khlynova O.V., Abdulganieva D.I., Alekseenko S. A., Ardatskaya M. D., Bakulin I. G., Bakulina N. V., Bueverov A. O., Vinitskaya E V.V., Volynets G.V., Eremina E. Yu., Grinevich V.B., Dolgushina A.I., Kazyulin A. N., Kashkina E. I., Kozlova I. V., Konev Yu.V., Korochanskaya N. V., Kravchuk Yu.A., Li E.D., Loranskaya I.D., Makhov V.M., Mekhtiev S.N., Novikova V.P., Ostroumova O.D., Pavlov Ch.S., Radchenko V.G., Samsonov A.A., Sarsenbaeva A.S., Sayfutdinov R.G., Seliverstov P.V., Sitkin S.I., Stefanyuk O.V., Tarasova L.V., Tkachenko E.I., Uspensky Yu.P., Fominykh Yu.A., Khavkin A.I., Tsyganova Yu.V., Sharkhun O.O. Non-alcoholic fatty liver disease in adults: clinical picture, diagnosis, treatment. Guidelines for therapists, third version. Experimental and Clinical Gastroenterology. 2021; 185 (1): 4–52. https://doi.org/10.31146/1682–8658-ecg-185–1–4–52

58. Taylor F, Ward K, Moore TH, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011; (1): 1–76. https://doi.org/10.1002/14651858.CD004816.pub4

59. Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high-density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ. 2014; 349: 1–26. https://doi.org/10.1136/bmj.g4379

60. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipi-daemias: lipid modification to reduce cardiovascular risk Eur Heart J. 2020; 41 (1): 111–188. https://doi.org/10.1093/eurheartj /ehz455

61. Björnsson ES. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int. 2017; 37 (2): 173–178. https://doi.org/10.1111/liv.13308

62. Saha A, Garg A. Severe Liver Injury Associated with High-Dose Atorvastatin Therapy. J Investig Med High Impact Case Rep. 2021; 9: 1–4. https://doi.org/10.1177/23247096211014050

63. Mato JM, Martínez-Chantar ML, Lu SC. S-adenosylmethionine metabolism and liver disease. Ann Hepatol. 2013; 12 (2): 183–189. Available at: https://pubmed.ncbi.nlm.nih.gov/23396728

64. Bottiglieri T. S-Adenosyl-L-methionine (SAMe): from the bench to the bedside – molecular basis of a pleiotrophic molecule. Am J Clin Nutr. 2002; 76 (5): 1151S-7S. https://doi.org/10.1093/ajcn/76/5.1151S

65. Li Z, Agellon LB, Allen TM, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006; 3 (5): 321–331. https://doi.org/10.1016/j.cmet.2006.03.007

66. Vance DE. Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta. 2013; 1831 (3): 626–632. https://doi.org/10.1016/j.bbalip.2012.07.017

67. Walker AK, Jacobs RL, Watts JL, et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 2011; 147 (4): 840–852. https://doi.org/10.1016/j.cell.2011.09.045

68. Caballero F, Fernández A, Matías N, et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem. 2010; 285 (24): 18528–18536. https://doi.org/10.1074/jbc.M109.099333

69. Fu S, Yang L, Li P, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011; 473 (7348): 528–531. https://doi.org/10.1038/nature09968

70. Moylan CA, Pang H, Dellinger A, et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology. 2014; 59 (2): 471–482. https://doi.org/10.1002/hep.26661

71. Vendemiale G, Altomare E, Trizio T, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand J Gastroenterol. 1989; 24 (4): 407–415. https://doi.org/10.3109/00365528909093067

72. Shankar R., Virukalpattigopalratnam M.P., Singh T. Heptral® (Ademetionine) in intrahepatic cholestasis due to chronic non-alcoholic liver disease: subgroup analysis of results of a multicentre observational study in India. Journal of Clinical and Experimental Hepatology. 2014; 4: S33. https://doi.org/10.1016/j.jceh.2014.02.071

73. Baranovsky A. Yu., Raikhelson K.L., Marchenko N.V. The use of S-adenosylmethionine (Heptral®) in the treatment of patients with non-alcoholic steatohepatitis. Clinical perspectives of gastroenterology, hepatology. 2010; 1: 3–10. Access mode: https://elibrary.ru/item.asp?id=13034363

74. Guo T, Chang L, Xiao Y, Liu Q. S-adenosyl-L-methionine for the treatment of chronic liver disease: a systematic review and meta-analysis. PLoS One. 2015; 10 (3): 1–17. https://doi.org/10.1371/journal.pone.0122124

75. Kalachnyuk T.N. The effectiveness of hepatoprotective therapy for drug hepatitis caused by taking statins in elderly patients. Clinical gerontology. 2010; 16 (9–10): 34. Access mode: https://cyberleninka.ru/article/n/effektivnost-gepatoprotektornoy-terapii-lekarstvennogo-gepatita-voznikshego-pri-prieme-statinov-u-bolnyh-pozhilogo-vozrasta.

76. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J Hepatol. 2001; 35 (1): 134–146. https://doi.org/10.1016/s0168–8278(01)00092–7

77. Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58(1): 119–125. https://doi.org/10.1016/j.jhep.2012.08.008.

78. Beuers U. Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2006; 3 (6): 318–328. https://doi.org/10.1038/ncpgasthep0521

79. Sokolovic D, Nikolic J, Kocic G, et al. The effect of ursodeoxycholic acid on oxidative stress level and DNase activity in rat liver after bile duct ligation. Drug Chem Toxicol. 2013; 36 (2): 141–148. https://doi.org/10.3109/01480545.2012.658919

80. Xiang Z, Chen YP, Ma KF, et al. The role of ursodeoxycholic acid in non-alcoholic steatohepatitis: a systematic review. BMC Gastroenterol. 2013; 13: 140. https://doi.org/doi:10.1186/1471–230X-13–140

81. Korneeva O.N., Drapkina O.M. Possibilities of using ursodeoxycholic acid and statins to reduce cardiovascular risk in patients with metabolic syndrome and non-alcoholic fatty liver disease. Russian medical news. 2011; 16 (3): 57–64. Access mode: https://elibrary.ru/item.asp?id=16858328

82. Martsevich S. Yu., Kutishenko N.P., Drozdova L. Yu., Lerman O.V., Nevzorova V.A., Reznik I.I., Shavkuta G.V., Yakhontov D.A. To study the effect of ursodeoxycholic acid on the efficacy and safety of statin therapy in patients with diseases of the liver, gallbladder and/or biliary tract (foreshortening study). Rational pharmacotherapy in cardiology. 2014; 10 (2): 147–152. Access mode: https://cyberleninka.ru/article/n/izuchenie-vliyaniya-ursodezoksiholevoy-kisloty-na-effektivnost-i-bezopasnost-terapii-statinami-u-bolnyh-s-zabolevaniyami-pecheni


Review

For citations:


Polyakova O.A., Ostroumova O.D., Kovaleva G.P., Pavleeva E.E. Comorbidity of non-alcoholic fatty liver disease and cardiovascular disease: focus on ademetionine and ursodeoxycholic acid. Medical alphabet. 2021;1(29):13-20. (In Russ.) https://doi.org/10.33667/2078-5631-2021-29-13-20

Views: 785


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)