Preview

Medical alphabet

Advanced search

Differentiated approach to treatment of cognitive disorders associated with SARS-CoV-2 (COVID-19), taking into account comorbidity factor

https://doi.org/10.33667/2078-5631-2021-22-18-24

Abstract

The prevalence of cognitive impairment in COVID-19 ranges from 59 to 65 per cent. Such variability may be associated with age and comorbidity. Arterial hypertension, diabetes mellitus, atherosclerosis are the most common comorbid conditions in patients with COVID-19. The cohort of patients with hypertension and diabetes is aged 50 and over, which suggests that age is the most important reason for the difference in the clinical picture of cognitive impairment. To date, there are no clinical guidelines for the management of patients with cognitive impairment and COVID-19, which leads to the use of various drugs, often symptomatic, increasing the risk of polypharmacy. A differentiated approach to therapy should be based on the rule of using drugs with pleiotropic effects and proven effcacy, such as Duzofarm and Nimopin.

About the Authors

M. V. Putilina
Pirogov Russian National Research Medical University
Russian Federation

Putilina Marina V., DM Sci, professor, professor at Dept of Clinical Pharmacology, Faculty of Medicine

 Moscow 



N. V. Teplova
Pirogov Russian National Research Medical University
Russian Federation

Teplova Natalya V., DM Sci, professor, head of Dept of Clinical Pharmacology, Faculty of Medicine

 Moscow 



O. S. Gerasimova
Pirogov Russian National Research Medical University
Russian Federation

Gerasimova Olga S., assistant at Dept of Clinical Pharmacology, Faculty of Medicine. 

 Moscow 



References

1. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, Shi C, Hu S. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020 Oct;129:98–102. DOI: 10.1016/j.jpsychires.2020.06.022. Epub 2020 Jun 30. PMID: 32912598; PMCID: PMC7324344. SM.

2. Miskowiak KW, Johnsen S, Sattler, Nielsen S, Kunalan K, Rungby J, Lapperre T, Porsberg CM Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables, European Neuropsychopharmacology, 2021; V. 46: 39–48, https://doi.org/10.1016/j.euroneuro.2021.03.

3. Putilina MV, Teplova NV, Poryadin GV. Prospects for pharmacological adaptation of neurovascular unit in conditions of neurotropic viralinfection. S. S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2021; 121 (5): 89–95. (In Russ.) https://doi.org/10.17116/jnevro202112105189

4. Devita M., Bordignon A., Sergi G. et al. The psychological and cognitive impact of Covid-19 on individuals with neurocognitive impairments: research topics and remote intervention proposals. Aging Clin Exp Res 33, 733–736 (2021). https://doi.org/10.1007/s40520–020–01637–6

5. Alnefeesi Y, Siegel A, Lui LMW, Teopiz KM, Ho RCM, Lee Y, Nasri F, Gill H, Lin K, Cao B, Rosenblat JD and McIntyre RS (2021) Impact of SARS-CoV-2 Infection on Cognitive Function: A Systematic Review. Front. Psychiatry. 11: 621773. DOI: 10.3389/fpsyt.2020.621773

6. Gromova OA, Torshin IYu, Semenov VA, Putilina MV, Chuchalin AG. Direct and indirect neurological manifestations of COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2020; 120 (11): 11–21. (In Russ.) https://doi.org/10.17116/jnevro202012011111

7. Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020; 3 (6): e2012270. DOI: 10.1001/jamanetworkopen.2020.12270.

8. Putilina M.V. Comorbid patient in real clinical practice. Consilium Medicum. 2017; Vol. 19, 2: 71–79.

9. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 Mar 14; 34 (2). DOI: 10.23812/CONTI-E. PMID: 32171193.

10. Putilina M.V., Grishin D.V.SARS-CoV-2 (COVID-19) as a predictor of neuroinflammation and neurodegeneration: potential therapy strategies. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2020; 120 (8): 58–64.

11. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 Mar 14; 34 (2). DOI: 10.23812/CONTI-E. PMID: 32171193.

12. Putilina M.V. The role of endothelial dysfunction in cerebrovascular diseases. The Doctor; 2012; 7: 24–28.

13. Carod-Artal FJ. Neurological complications of coronavirus and COVID-19. Complicaciones neurológicas por coronavirus y COVID-19. Rev Neurol. 2020; 70 (9): 311–322. DOI: 10.33588/rn.7009.2020179.

14. Devita M., Bordignon A., Sergi G., et al. The psychological and cognitive impact of Covid-19 on individuals with neurocognitive impairments: research topics and remote intervention proposals. Aging Clin Exp Res 33, 733–736 (2021). https://doi.org/10.1007/s40520–020–01637–6

15. Alnefeesi Y, Siegel A, Lui LMW, Teopiz KM, Ho RCM, Lee Y, Nasri F, Gill H, Lin K, Cao B, Rosenblat JD and McIntyre RS (2021) Impact of SARS-CoV-2 Infection on Cognitive Function: A Systematic Review. Front. Psychiatry 11: 621773. DOI: 10.3389/fpsyt.2020.621773.

16. Loebel M, Grabowski P, Heidecke H, Bauer S, Hanitsch LG, Wittke K, Meisel C, Reinke P, Volk HD, Fluge Ø, Mella O, Scheibenbogen C. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. Brain Behav Immun. 2016 Feb; 52: 32–39. DOI: 10.1016/j.bbi.2015.09.013. Epub 2015 Sep 21. PMID: 26399744.

17. Meng J, Xiao G, Zhang J, et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020; 9 (1): 757–760. DOI: 10.1080/22221751.2020.1746200.

18. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol. 2019 May; 56 (5): 3295–3312. DOI: 10.1007/s12035–018–1283–6.

19. Teplova N.V., Lyusov V.N., Oganov R.G., Evsikov E.M., Sharipov R.A. Nephrogenic factors of resistance formation to antihypertensive therapy in patients with primary arterial hypertension; Rational pharmacotherapy in cardiology. 2015; 6(11):590–594

20. Teplova N. V., Evsikov E. M. Angiotensin receptor blocker Valsartan (Diovan) in clinical practice. RMJ; 2005;13(14): 944–947

21. Putilina M.V. Neuroprotective therapy of chronic cerebral ischemia. The Doctor 2008; 8: 27–32.

22. Martin-Jimenez P, Munoz-Garcia MI, Seoane D, et al. Cognitive impairment is a common comorbidity in COVID-19 deceased patients. A hospital-based retrospective cohort study. medRxiv; 2020. DOI: 10.1101/2020.06.08.20125872.

23. Hamm ME, Brown PJ, Karp JF, Lenard E, Cameron F, Dawdani A, Lavretsky H, Miller JP, Mulsant BH, Pham VT, Reynolds CF, Roose SP, Lenze EJ. Experiences of American Older Adults with Pre-existing Depression During the Beginnings of the COVID-19 Pandemic: A Multicity, Mixed-Methods Study. Am J Geriatr Psychiatry. 2020 Sep; 28 (9): 924–932. DOI: 10.1016/j.jagp.2020.06.013. Epub 2020 Jun 20. PMID: 32682619; PMCID: PMC7305766.

24. Putilina M.V. Risk factors, features of clinical course and treatment approaches in aged patients with cerebral stroke. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2011; 111 (5): 90–95.

25. Kamyshnyi A., Krynytska I., Matskevych V., Marushchak M., Lushchak O. Arterial Hypertension as a Risk Comorbidity Associated with COVID-19 Pathology. International Journal of Hypertension, vol. 2020, ArticleID8019360, 7 pages, 2020. https://doi.org/10.1155/2020/8019360

26. Putilina M. V. The role of arterial hypertension in the development of chronic cerebrovascular accident. Journal of Neurology and Psychiatry. S. S. Korsakov. 2014; 114 (9): 124–128.

27. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolf A, Lagos-Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R; Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar–Apr; 34: 101623. DOI: 10.1016/j.tmaid.2020.101623.

28. Samanta J, Gupta R, Singh MP, Patnaik I, Kumar A, Kochhar R. Coronavirus disease 2019 and the pancreas. Pancreatology. 2020; 20 (8): 1567–1575. DOI: 10.1016/j.pan.2020.10.035.

29. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW; the Northwell COVID-19 Research Consortium, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020 May 26; 323 (20): 2052–2059. DOI: 10.1001/jama.2020.6775.

30. Putilina M. V., Natarova E. B. Features of manifestations of cerebral circulation insuffciency in young patients. Russian medical news; 2002. 1: 41–44.

31. Ariza ME. Myalgic Encephalomyelitis. Chronic Fatigue Syndrome: Human Herpes Viruses are Back! Biomolecules. 2021; 11 (2): 185. https://doi.org/10.3390/biom11020185

32. Putilina M.V., Baranova O.A. Results of the multicenter clinical and epidemiological observational program GLOBUS (determination of the prevalence of dizziness and assessment of therapy regimens at the outpatient level). Journal of Neurology and Psychiatry. S.S. Korsakov. 2014; 114 (5): 33–38.

33. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med Hypotheses. 2021 Jan; 146: 110469. DOI: 10.1016/j.mehy.2020.110469. Epub 2021 Jan 2. PMID: 33401106. PMCID: PMC7836544.

34. Putilina MV, Teplova NV. Medicinal safety as a priority area of domestic medicine. General Medicine. 2019; 4: 7–14 DOI: 10.24411/2071–5315–2019–12152.

35. Wiernsperger NF. Serotonin, 5-HT2 receptors, and their blockade by naftidrofuryl: a targeted therapy of vascular disease. J Cardiovasc Pharmacol. 1994; 23 Suppl 3: S37–43. PMID: 7517475.

36. Marconi A, Darquenne S, Boulmerka A, Mosnier M, D'Alessio P. Naftidrofuryl-driven regulation of endothelial ICAM-1 involves nitric oxide. Free Radic Biol Med. 2003 Mar 1; 34 (5): 616–25. DOI: 10.1016/s0891–5849(02)01368–0. PMID: 12614850.

37. Belova AN, Shakurova DN, Gayazova EV. Possibilities of using naftidrofuryl in the therapy of cerebrovascular diseases: Literature review and the authors’ observations. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, neuropsychiatry, psychosomatics. 2015; 7 (4): 110–115. https://doi.org/10.14412/2074–2711–2015–4–110–115

38. Zolotovskaya I.A., Davydkin I.L. Possibilities of pharmacological correction of structural and functional changes in microcirculation under conditions of endothelial dysfunction in comorbid patients with stroke. Clinician. 2016; 10 (2): 32–42.https://doi.org/10.17650/1818–8338–2016–10–2–32–42.

39. Parfenov V.A., Lokshina A.B., Grishina D.A., Starchina Yu.A., Kosivtsova O.V. The use of naftidrofuril for moderate vascular cognitive impairment. Medical advice. 2017; (1S): 22–26. (In Russ.) https://doi.org/10.21518/2079–701X-2017–0–22–26

40. Zhang LK., Sun Y., Zeng H. et al. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov 6, 96 (2020). https://doi.org/10.1038/s41421–020–00235–0

41. Benjamin Chun-Kit Tong, Aston Jiaxi Wu, Min Li, King-Ho Cheung. Calcium signaling in Alzheimer's disease & therapies. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. V. 1865, 11, B, 2018: 1745–1760.

42. Salvadori E, Poggesi A, Donnini I, Rinnoci V, Chiti G, Squitieri M, Tudisco L, Fierini F, Melone A, Pescini F, Pantoni L. Association of nimodipine and choline alphoscerate in the treatment of cognitive impairment in patients with cerebral small vessel disease: study protocol for a randomized placebo-controlled trial-the CONIVaD trial. Aging Clin Exp Res. 2020 Mar; 32 (3): 449–457. DOI: 10.1007/s40520–019–01229-z. Epub 2019 May 30. PMID: 31148099.

43. Zhang, LK., Sun, Y., Zeng, H. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov 6, 96 (2020). https://doi.org/10.1038/s41421–020–00235–0

44. Zhang J, Liu N, Yang C. Effects of rosuvastatin in combination with nimodipine in patients with mild cognitive impairment caused by cerebral small vessel disease. Panminerva Med. 2019 Dec; 61 (4): 439–443. DOI: 10.23736/S0031–0808.18.03475–4. Epub 2018 Jun 28. PMID: 29962180.

45. Bernhardt T., Kuebler J., Erzigkeit H. Impairment of cerebral function in old age: nimodipine in general practice. Eur. J. Clin. Res. 1995. V. 7. P. 205–215.

46. López-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. 2002; (3): CD 000147. DOI: 10.1002/14651858.CD000147. PMID: 12137606.

47. Putilina MV Combined neuroprotective therapy for cerebrovascular diseases. The Doctor, 2012; 4: 69–73.


Review

For citations:


Putilina M.V., Teplova N.V., Gerasimova O.S. Differentiated approach to treatment of cognitive disorders associated with SARS-CoV-2 (COVID-19), taking into account comorbidity factor. Medical alphabet. 2021;(22):18-24. (In Russ.) https://doi.org/10.33667/2078-5631-2021-22-18-24

Views: 348


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)