Preview

Medical alphabet

Advanced search

Prospects for the use of collagen-containing matrices in directed tissue regeneration. Literature review

https://doi.org/10.33667/2078-5631-2021-24-9-13

Abstract

Studies of recent decades have convincingly shown that collagen in connective tissue plays not only a structural role. In the 80s of the XX centu[1]ry, A. Pishinger and H. Heine suggested the informative-regulatory role of collagen in the extracellular matrix (A. Pischinger, 1990). In recent years, the morphogenetic function of collagen has been actively studied, the implementation of which is possible due to the presence of collagen re[1]ceptors on the surface of various cell populations, such as platelets and fibroblasts. Collagen regulates the remodeling of the extracellular matrix (J. D. San Antonio et al., 2020). At the same time, its decay products, which stimulate growth by the negative feedback mechanism, are probably of great importance. In general, the relationship between the synthesis and breakdown of collagen is of fundamental importance for the regulation of connective tissue growth.

About the Authors

Е. М. Boyko
Stavropol state medical university of the Ministry of Health of the Russian Federation
Russian Federation

E.M. Boyko, teacher Essentuki branch

Stavropol



A. A. Dolgalev
Stavropol state medical university of the Ministry of Health of the Russian Federation
Russian Federation

A. A. Dolgalev, PhD, MD, Head of the Center for Innovation and Technology Transfer, Professor of the Department of General Practice Dentistry and Pediatric Dentistry, Professor of the Department of Clinical Dentistry with a course of OS and MFS

Stavropol



D. V. Stomatov
Penza State University
Russian Federation

D. V. Stomatov, candidate of Medical Sciences, Associate Professor of the Department of Maxillofacial Surgery

Penza



S. G. Ivashkevih
Peoples ‘ Friendship University of Russia
Russian Federation

S. G. Ivashkevih, Lecturer of the department, Oral and Maxillofacial surgery department

Moscow



A. A. Chagarov
Stavropol state medical university of the Ministry of Health of the Russian Federation
Russian Federation

A. A. Chagarov, Postgraduate Student, Department of General Practice and Pediatric Dentistry

Stavropol



М. G. Musaev
Stavropol state medical university of the Ministry of Health of the Russian Federation Stavropol
Russian Federation

M. G. Musaev, Stavropol State Medical University, Stavropol, Russia, Postgraduate of the Department of general and pediatric

Stavropol



U. B. Edisherashvili
Stavropol state medical university of the Ministry of Health of the Russian Federation
Russian Federation

U. B. Edisherashvili, Stavropol State Medical University, Stavropol, Russia, Postgraduate of the Department of general and pediatric dentistry

Stavropol



N. G. Gabrielian
Stavropol state medical university of the Ministry of Health of the Russian Federation
Russian Federation

N. G. Gabrielian, Post-graduate student of the Department of Dentistry of General Practice and Pediatric Dentistry

Stavropol



References

1. Dolgalev A.A. Comparative characteristics of the use of bone-substituting materials on a mineral basis and on the basis of collagen /A. A. Dolgalev, D. S.-A. Eldashev, S. G. Ivashkevich, A. P. Kutsenko, A. A. Chagarov, D. A. De // Medical Alphabet. 2020;12(426):45–47.

2. The study of cell culture proliferation on bioresorbable membranes / E.M. Boyko, A.A. Dolgalev, I.A. Bazikov, V.A. Zelensky, I.A. Koldunov // Biotechnology: a look into the future : materials of the III International Scientific and Practical Confer ence-Stavropol: Publishing House of StSMU, 2017. PP.135–141.

3. Zhusev A.I., Remov A.Yu. Dental implantation. Success criteria. M., 2004.

4. Dolgalev A.A., Zelensky V.A., Trubushkina E.M., Boyko E.M., Dotdaeva K.R., Ava nesyan V.M., Kutsenko A.P., Ivanov S.S. Investigation of bone tissue repair using X-ray micrography with artificially created defects of the anterior wall of the maxillary sinus in an experiment // Chief Physician. 2021. No. 3 (78). PP. 10–13.

5. Zitsmann N., Scherer P. Dental rehabilitation with the help of dental implants. Clinical guide. Translated from English. Edited by M.V. Lomakin. M.: Azbuka 2005; 133.

6. Ivanov S.Yu. Fundamentals of dental implantology. Textbook / S.Yu. Ivanov, I.Yu. Petrov. M.: GEОTAR-Media, 2017. 152 p.

7. Monakov D.V. Clinical and functional justification of the use of a dental intraos seous-bone implant in conditions of a shortage of bone mass of the jaws: 0dis. ... candidate of medical sciences. Samara, 2018. 157 p.

8. Musheev IU, Olesova VN, Fromovich OZ. Practical dental implantology. 2nd ed., add. M.: Locus Standi, 2008. 498 р.

9. Nikitin VN, Persky EE, Utevskaya LA. Age and evolutionary biochemistry of colla gen structures. Kiev: Nauk. dumka, 1977.

10. Potehina Yu.V. The structure and functions коллагена. The album. остеопат. журн. 2016; № 1–2 (32–33): 8799.

11. Apostu D, Lucaciu O, Mester A et al. Cannabinoids and bone regeneration. Drug Metab Rev. 2019;51(1):65–75.

12. Aprile P, Letourneur D, Simon-Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv Healthc Mater. 2020;9(19):e2000707.

13. Arseni L, Lombardi A, Orioli D. From Structure to Phenotype: Impact of Collagen Alterations on Human Health. Int J Mol Sci. 2018;19(5):1407.

14. Bella J, Hulmes DJ. Fibrillar Collagens. Subcell Biochem. 2017;82:457-490. Rakhmatia Y.D., Ayukawa Y., Furuhashi A., Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental ap plications. J Prosthodont Res. 2013:57:3–14.

15. Bella J. Collagen structure: new tricks from a very old dog. Biochem J. 2016;473(8):1001–25.

16. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–342.

17. Brodsky B, Ramshaw JA. Bioengineered Collagens. Subcell Biochem. 2017;82:601– 629.

18. Bunyaratavej P, Wang H-L. Collagen membranes: a review. J Periodontol. 2001;72:215–229.

19. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Medicine. 2011;9(6):1–10.

20. Dimitriou R, Mataliotakis GI, Angoules AG et al. Complications following autolo gous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury. 2011;42:3–15.

21. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337.

22. Feng X., Teitelbaum S.L. Osteoclasts: New Insights. Bone Res. 2013;1:11–26. 23. Gordon MK, Hahn RA. Collagens. Cell Tissue Res. 2010;339(1):247–57.

23. Gruber R, Stadlinger B, Terheyden H. Cell-to-cell communication in guided bone regeneration: molecular and cellular mechanisms. Clin Oral Implants Res. 2017;28(9):1139–1146.

24. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1):45–53.

25. Jorge-Herrero E, Fernandez P, Turnay J et al. Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 1999;20:539–545.

26. Karsdal MA, Nielsen SH, Leeming DJ et al. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev. 2017;121:43–56.

27. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–327.

28. Khojasteh A, Kheiri L, Motamedian SR, Khoshkam V. Guided Bone Regener ation for the Reconstruction of Alveolar Bone Defects. Ann Maxillofac Surg. 2017;7(2):263–277.

29. Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225–235.

30. Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J 2014;8:56–65.

31. Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol. 1990;6(2):23–31.

32. Misch СE. Bone classification, training, keys and implant success. Dent Today. 1989;8(4):39–44.

33. Raggatt LJ, Partridge NC. Cellular and Molecular Mechanisms of Bone Remod eling. The Journal of Biological Chemistry. 2010; 285(33):25103–25108.

34. Robling AG, Bonewald LF. The Osteocyte: New Insights. Annu Rev Physiol. 2020;82:485–506.

35. Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 2005;16:369–378.

36. Sainio A, Järveläinen H. Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal. 2020;66:109487.

37. Sbricoli L, Guazzo R, Annunziata M et al. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials (Basel). 2020;13(3):786.

38. Sheikh Z, Qureshi J, Alshahrani AM et al. Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology. 2017;105(1):1– 12.

39. Soldatos NK, Stylianou P, Koidou VP et al. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48(2):131–147.

40. Sorushanova A, Delgado LM, Wu Z et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv Mater. 2019;31(1): e1801651.

41. Taha IN, Naba A. Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem. 2019;63(3):417–432.

42. Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286(15):2830–2869.

43. Urban IA, Monje A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac Surg Clin North Am. 2019;31(2):331–338.

44. Walma DAC, Yamada KM. The extracellular matrix in development. Development. 2020;147(10):dev175596.

45. Wessing B, Lettner S, Zechner W. Guided Bone Regeneration with Collagen Mem branes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implants. 2018;33(1):87–100.


Review

For citations:


Boyko Е.М., Dolgalev A.A., Stomatov D.V., Ivashkevih S.G., Chagarov A.A., Musaev М.G., Edisherashvili U.B., Gabrielian N.G. Prospects for the use of collagen-containing matrices in directed tissue regeneration. Literature review. Medical alphabet. 2021;(24):9-13. (In Russ.) https://doi.org/10.33667/2078-5631-2021-24-9-13

Views: 394


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)