Preview

Medical alphabet

Advanced search

Biomarkers in patients after chemotherapy

https://doi.org/10.33667/2078-5631-2021-19-49-53

Abstract

Along with the rapid development of molecular genetic testing, immunotherapy and targeted antitumor therapy in Oncology, the risk of cardiotoxicity associated with chemotherapy remains a keystone that directly affects the survival and quality of life of patients after therapy. Elevated levels of troponin, BNP/NT-proBNP, myeloperoxidase, and D-dimer have been associated with increased all-cause mortality in cancer patients and have been shown in numerous studies to predict the risk of heart failure and myocardial damage associated with chemotherapy. Specifi diagnostic algorithms are particularly important for risk stratifiation, monitoring, and long-term follow-up of cancer patients receiving chemotherapy. Biomarkers are the basis for diagnosing acute and chronic heart diseases. However, their role in the timely detection and monitoring of cardiotoxicity is not well understood. Thus, clinicians should identify adverse effects at an early stage, seeking to take appropriate preventive measures before the occurrence of a permanent or irreversible dysfunction of the heart. In dynamic cardiology, biomarkers are a key tool for risk assessment, diagnosis, and monitoring of cancer-related cardiotoxicity and cancer therapy. The complex interaction of such branches of medicine as oncology, oncotherapy and cardiology indicates the need for a multi-disciplinary cardio-oncological approach to ensure optimal quality of treatment

About the Authors

F. R. Akildzhonov
National Medical Research Center for Cardiovascular Surgery n.a. A. N. Bakulev
Russian Federation

Akildzhonov Firdavsdzhon R., resident physician

Moscow



J. I. Buziashvili
National Medical Research Center for Cardiovascular Surgery n.a. A. N. Bakulev
Russian Federation

Buziashvili Juriy I., DM Sci, professor, academician of RAS, head of Clinical and Diagnostic Dept

Moscow



I. S. Stilidi
National Medical Research Center for Cardiovascular Surgery n.a. A. N. Bakulev
Russian Federation

Stilidi Ivan S., DM Sci, professor, academician of RAS, director

Moscow



E. U. Asymbekova
National Medical Research Center for Cardiovascular Surgery n.a. A. N. Bakulev
Russian Federation

Asymbekova El’mira U., DM Sci, freelance researcher at Clinical and Diagnostic Dept.

Moscow



E. V. Artamonova
National Medical Research Center for Cardiovascular Surgery n.a. A. N. Bakulev
Russian Federation

Artamonova Elena V., DM Sci, freelance researcher at Dept of New Anticancer Drugs Studies

Moscow



References

1. Zaridze D. G., Maksimovich D. M. Prevention of malignant neoplasms. Advances in Molecular Oncology. 2017; 4 (2): 8–25. (In Russ.) https://doi.org/10.17650/2313–805X-2017–4–2–8–25

2. Moslehi J., Amgalan D., Kitsis R. Grounding Cardio-Oncology in Basic and Clinical Science. Circulation. 2017; 136 (1): 3–5. https://doi.org/10.1161/circulationaha.117.025393

3. Ferrell B., Temel J., Temin S. Integration of Palliative Care Into Standard Oncology Care: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2017; 35 (1): 96–112. https://doi.org/:10.1200/JCO.2016.70.1474

4. Zamorano J., Lancellotti P., Rodriguez Muñoz D. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37 (36): 2768–2801. https://doi.org/:10.1093/eurheartj/ehw211

5. Semiglazova T. Yu., Teletaeva G. M., Kozyavin N. A., Zagatina A. V. Diagnosis and prevention of cardiotoxicity in patients with breast cancer from the standpoint of an oncologist and a cardiologist. Tumors of female reproductive system. 2017;13 (3): 17–27. (In Russ.) https://doi.org/10.17650/1994–4098–2017–13–3–17–27

6. Sweeney M., Yiu A., Lyon A. Cardiac Atrophy and Heart Failure In Cancer. Card Fail Rev. 2017; 3 (1): 62–65. https://doi.org/:10.15420/cfr.2017:3:2

7. Burch G., Phillips J., Ansari A. The cachetic heart. A clinico-pathologic, electrocardiographic and roentgenographic entity. Dis Chest. 1968; 54 (5): 403–409. https://doi.org/10.1378/chest.54.5.403

8. Pavo N., Raderer M., Hülsmann M. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015; 101 (23): 1874–1880. https://doi.org/10.1136/heartjnl-2015–307848

9. De Vito P. Atrial natriuretic peptide: an old hormone or a new cytokine? Peptides. 2014; 58: 108–116. https://doi.org/10.1016/j.peptides.2014.06.011

10. Meijers W., Maglione M., Bakker S. Heart Failure Stimulates Tumor Growth by Circulating Factors. Circulation. 2018; 138 (7): 678–691. https://doi.org/10.1161/CIRCULATIONAHA.117.030816

11. Shi C., van der Wal H., Silljé H. Tumour biomarkers: association with heart failure outcomes. J Intern Med. 2020; 10.1111/joim.13053. https://doi.org/10.1111/joim.13053

12. Meijers W., de Boer R., van Veldhuisen D. Biomarkers and low risk in heart failure. Data from COACH and TRIUMPH. Eur J Heart Fail. 2015; 17 (12): 1271–1282. https://doi.org/10.1002/ejhf.407

13. Sharma S., Jackson P., Makan J. Cardiac troponins. Journal of Clinical Pathology. 2004; 57 (10): 1025–1026. https://doi.org/10.1136/jcp.2003.015420

14. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European Heart Journal. 2015; 37 (3): 267–315. https://doi.org/10.1093/eurheartj/ehv320.

15. Thygesen K., Alpert J., Jaffe A. Fourth Universal Defiition of Myocardial Infarction Circulation. 2018; 138 (20): 618–651. https://doi.org/10.1161/CIR.0000000000000617

16. Tanindi A., Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vasc Health Risk Manag. 2011; 7: 597–603. https://doi.org/10.2147/VHRM.S 24509

17. Myhre P., O’Meara E., Claggett B. Cardiac Troponin I and Risk of Cardiac Events in Patients With Heart Failure and Preserved Ejection Fraction. Circulation Heart Fail. 2018; 11 (11): e005312. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005312

18. Eggers K., Jernberg T., Lindahl B. Cardiac Troponin Elevation in Patients Without a Specifi Diagnosis. J Am Coll Cardiol. 2019; 73 (1): 1–9. https://doi.org/10.1016/j.jacc.2018.09.082

19. Bracun V., Aboumsallem J., van der Meer P., de Boer R. Cardiac Biomarkers in Patients with Cancer: Considerations, Clinical Implications, and Future Avenues. Curr Oncol Rep. 2020; 22 (7): 67. https://doi.org/10.1007/s11912–020–00930-x

20. Ky B., Putt M, Sawaya H. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014; 63 (8): 809–816. https://doi.org/:10.1016/j.jacc.2013.10.061

21. Cardinale D., Sandri M., Colombo A. Prognostic value of troponin I in cardiac risk stratifiation of cancer patients undergoing high-dose chemotherapy. Circulation. 2004; 109 (22): 2749–2754. https://doi.org/10.1161/01.CIR.0000130926.51766.CC

22. Blaes A., Rehman A., Vock D. Utility of high-sensitivity cardiac troponin T in patients receiving anthracycline chemotherapy. Vasc Health Risk Manag. 2015; 11: 591–594. https://doi.org/10.2147/VHRM.S 89842

23. Kitayama H., Kondo T., Sugiyama J. High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer. 2017; 24 (6): 774–782. https://doi.org/10.1007/s12282–017–0778–8

24. Zhang C., Pei X., Song F. Early anthracycline-induced cardiotoxicity monitored by echocardiographic Doppler parameters combined with serum hs-cTnT. Echocardiography. 2017; 34 (11): 1593–1600. https://doi.org/10.1111/echo.13704

25. Mahjoob M., Sheikholeslami S., Dadras M. Prognostic Value of Cardiac Biomarkers Assessment in Combination with Myocardial 2D Strain Echocardiography for Early Detection of Anthracycline-Related Cardiac Toxicity. Cardiovasc Hematol Disord Drug Targets. 2020; 20 (1): 74–83. https://doi.org/10.2174/1871529X19666190912150942

26. Tan L., Lyon A. Role of Biomarkers in Prediction of Cardiotoxicity During Cancer Treatment. Curr Treat Options Cardiovasc Med. 2018; 20 (7): 55. https://doi.org/10.1007/s11936–018–0641 -z

27. Moslehi J., Salem J., Sosman J., Lebrun-Vignes B., Johnson D. Reporting of immune checkpoint inhibitor-associated myocarditis – Authors’ reply. Lancet. 2018; 392 (10145): 384–385. https://doi.org/10.1016/S 0140–6736(18)31556–3

28. Mahmood S., Fradley M., Cohen J. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J Am Coll Cardiol. 2018; 71 (16): 1755–1764. https://doi.org/10.1016/j.jacc.2018.02.037

29. Dolladille C., Ederhy S., Allouche S. Late cardiac adverse events in patients with cancer treated with immune checkpoint inhibitors. J Immunother Cancer. 2020; 8 (1): e000261. https://doi.org/10.1136/jitc-2019–000261

30. Gulati G., Heck S., Ree A. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled,double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016; 37(21): 1671–1680. https://doi.org/10.1093/eurheartj/ehw022

31. Cardinale D., Ciceri F., Latini R. Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur J Cancer. 2018; 94: 126–137. https://doi.org/10.1016/j.ejca.2018.02.005

32. Pareek N., Cevallos J., Moliner P. Activity and outcomes of a cardio-oncology service in the United Kingdom-a fie-year experience. Eur J Heart Fail. 2018; 20 (12): 1721–1731. https://doi.org/10.1002/ejhf.1292

33. Kappel C., Rushton M., Johnson C. Clinical experience of patients referred to a multidisciplinary cardio-oncology clinic: an observational cohort study. Curr Oncol. 2019; 26 (3): e322–e327. https://doi.org/10.3747/co.26.4509

34. Ponikowski P., Voors A., Anker S. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2016; 37 (27): 2129–2200. https://doi.org/10.1093/eurheartj/ehw128

35. Mueller C., McDonald K., de Boer R. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019; 21 (6): 715–731. https://doi.org/10.1002/ejhf.1494

36. Wang Y., Chen S., Ren L. Serum B-type natriuretic peptide levels as a marker for anthracycline-induced cardiotoxicity. Oncol Lett. 2016; 11 (5): 3483–3492. https://doi.org/10.3892/ol.2016.4424

37. Pavo N., Raderer M., Hülsmann M. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015; 101 (23): 1874–1880. https://doi.org/10.1136/heartjnl-2015–307848

38. Lenihan D., Stevens P., Massey M. The Utility of Point-of-Care Biomarkers to Detect Cardiotoxicity During Anthracycline Chemotherapy: A Feasibility Study. J Card Fail. 2016; 22 (6): 433–438. https://doi.org/10.1016/j.cardfail.2016.04.003

39. Bouwer N., Liesting C., Kofflrd M. NT-proBNP correlates with LVEF decline in HER 2-positive breast cancer patients treated with trastuzumab. Cardiooncology. 2019; 5:4. https://doi.org/10.1186/s40959–019–0039–4

40. Demissei B., Hubbard R., Zhang L. Changes in Cardiovascular Biomarkers With Breast Cancer Therapy and Associations With Cardiac Dysfunction. J Am Heart Assoc. 2020; 9 (2): e014708. https://doi.org/10.1161/JAHA.119.014708

41. Anatoliotakis N., Deftereos S., Bouras G. Myeloperoxidase: expressing inflmmation and oxidative stress in cardiovascular disease. Curr Top Med Chem. 2013; 13 (2): 115–138. https://doi.org/10.2174/1568026611313020004

42. Florescu D., Nistor D. Therapy-induced cardiotoxicity in breast cancer patients: a well-known yet unresolved problem. Discoveries (Craiova). 2019; 7 (1): e89. https://doi.org/10.15190/d.2019.2

43. Finkelman B., Putt M., Wang T. Arginine-Nitric Oxide Metabolites and Cardiac Dysfunction in Patients With Breast Cancer. J Am Coll Cardiol. 2017; 70 (2): 152–162.https://doi.org/10.1016/j.jacc.2017.05.019

44. Minasian L., Dimond E., Davis M. The Evolving Design of NIH-Funded Cardio-Oncology Studies to Address Cancer Treatment-Related Cardiovascular Toxicity. JACC Cardio Oncol. 2019; 1 (1): 105–113. https://doi.org/10.1016/j.jaccao.2019.08.007

45. Kikuchi R., Shah N., Dent S. Strategies to Prevent Cardiovascular Toxicity in Breast Cancer: Is It Ready for Primetime? J Clin Med. 2020; 9 (4): 896. Published 2020 Mar 25. https://doi.org/10.3390/jcm9040896

46. Slivnick J., Vallakati A., Addison D., Wallner A. Personalized Approach to Cancer Treatment-Related Cardiomyopathy. Curr Heart Fail Rep. 2020; 17 (2): 43–55. https://doi.org/10.1007/s11897–020–00453–3


Review

For citations:


Akildzhonov F.R., Buziashvili J.I., Stilidi I.S., Asymbekova E.U., Artamonova E.V. Biomarkers in patients after chemotherapy. Medical alphabet. 2021;(19):49-53. (In Russ.) https://doi.org/10.33667/2078-5631-2021-19-49-53

Views: 493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)