Preview

Medical alphabet

Advanced search

Role of pharmaco- and micronutrients in nutritional metabolic therapy of COVID-19 and other viral infections

https://doi.org/10.33667/2078-5631-2021-4-56-63

Abstract

Malnutrition is an unfavorable background for the course and outcome of viral diseases, including COVID-19. In accordance with international recommendations, timely correction of nutritional status using oral, tube enteral and parenteral nutrition is a necessary and mandatory method of concomitant therapy for COVID-19. An analytical review of the results of studies on the clinical use of pharmacological nutrients (glutamine; vitamins A, C, D, E; zinc, selenium) for the prevention and treatment of viral infections, including COVID-19, was performed. According to the data of clinical studies carried out in 2019–2020, the use of glutamine and antioxidant micronutrients as part of nutritional metabolic therapy can reduce the severity of clinical symptoms and accelerate the recovery process of patients with the new coronavirus infection COVID-19 and other viral diseases. From a practical point of view, the only sources of glutamine for enteral administration registered in the Russian Federation are Glutamine Plus for oral enteral nutrition and Intestamin for enteral tube administration and Dipeptiven 20% for parenteral nutrition. The use of pharmacological nutritional therapy, in particular, enteral or parenteral glutamine as a component of clinical nutrition in patients with viral infections and nutritional deficiency or the risk of its development, helps to improve clinical results, reduce the severity of the disease and accelerate the rehabilitation process.

About the Authors

A. V. Dmitriev
North-Western Association for Parenteral and Enteral Nutrition
Russian Federation

 Dmitriev Alexander V. 

Saint Petersburg



I. A. Machulina
City Clinical Hospital No. 70 n.a. E.O. Mukhina
Russian Federation

 Machulina Irina A. 

Moscow



A. E. Shestopalov
Russian Medical Academy for Postgraduate Continuous Education; Main Military Clinical Hospital n.a. N.N. Burdenko of the Ministry of Defense of Russia
Russian Federation

 Shestopalov Alexander E. 

Moscow



References

1. Cengiz M., Uysal B.B., Ikitimur H. et al. Effect of oral L-Glutamine supplementation on Covid-19 treatment. Clin. Nutr. Exp., 2020, 33: 24–31. https://doi.org/10.1016/j.yclnex.2020.07.003

2. Ferrara F., De Rosa F., Vitiello A. The Central Role of Clinical Nutrition in COVID-19 Patients During and After Hospitalization in Intensive Care Unit. SN Compr. Clin. Med., 2020, 2: 1064–1068. https://doi.org/10.1007/s42399-020-00410-0

3. Iddir M., Brito A., Dingeo G. et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients, 2020, 12, 1562; DOI: 10.3390/nu12061562.

4. Kim J., Zhang J., Cha Y. et al. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease 2019 (COVID-19). J. Transl. Med., 2020, 18: 257. https://doi.org/10.1186/s12967-020-02430-9

5. Romano L., Bilotta F., Dauri M. et al. Short Report – Medical nutrition therapy for critically ill patients with COVID-19. Eur. Rev. Med. Pharm. Sci., 2020, 24: 4035–4039.

6. Rozga M., Cheng F.W., Moloney L., Handu D. Effects of Micronutrients or Conditional Amino Acids on COVID-19-Related Outcomes: An Evidence Analysis Center Scoping Review. J. Acad. Nutr. Diet., 2020, 1–10. https://doi.org/10.1016/j.jand.2020.05.015

7. Santos H.O., Tinsley G.M., Da Silva G.A.R., Bueno A.A. Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription. J. Person. Med., 2020, 10, 145; DOI: 10.3390/jpm10040145

8. Ren W., Luo W., Wu M. et al. Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids, 2011, DOI: 10.1007/s00726–011–1134–5.

9. Uyangaa E., Ku Lee H., Kug Eo S. Glutamine and Leucine Provide Enhanced Protective Immunity Against Mucosal Infection with Herpes Simplex Virus Type 1. Imm. Network, 2012, 12 (5): 196–206. http://dx.doi.org/10.4110/in.2012.12.5.196

10. Wang K., Hoshino Y., Dowdell K. et al. Glutamine supplementation suppresses herpes simplex virus reactivation. J. Clin. Invest., 2017, 127 (7): 2626–2630. https://doi.org/10.1172/JCI88990

11. Keshavarz M., Solaymani-Mohammadi F., Namdari H. et al. Metabolic host response and therapeutic approaches to influenza infection. Cell. Mol. Biol. Lett., 2020, 25: 15. https://doi.org/10.1186/s11658-020-00211-2

12. Mehta S. Nutritional status and COVID-19: an opportunity for lasting change? Clin Med (Lond). 2020; clinmed. 2020–0187, https://doi.org/10.7861/clinmed.2020–0187

13. Martin-Vicente M., Gonzalez-Riaño C., Barbas C. et al. Metabolic changes during respiratory syncytial virus infection of epithelial cells. Plos. One, 2020, https://doi.org/10.1371/journal.pone.0230844

14. Smallwood H.S., Duan S., Morfouace M. et al. Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep., 2017, 19: 1640–1653. DOI: 10.1016/j.celrep.2017.04.039.

15. Lazrak A., Iles K.E., Liu G. et al. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J., 2009, 23: 3829–3842. DOI: 10.1096/fj.09–135590.

16. Erkekoğlu P., Aşçı A., Ceyhan M. et al. Selenium levels, selenoenzyme activities and oxidant/antioxidant parameters in H1N1-infected children. Turk. J. Pediatr., 2013, 55: 271–282. PMID: 24217073.

17. Lim J., Oh E., Kim Y. et al. Enhanced oxidative damage to DNA, lipids, and proteins and levels of some antioxidant enzymes, cytokines, and heat shock proteins in patients infected with influenza H1N 1 virus. Acta Virol., 2014, 58: 253–260. DOI: 10.4149/av_2014_03_253.

18. Ng M.P., Lee J.C., Loke W.M. et al. Does influenza A infection increase oxidative damage? New Rochelle: Mary Ann Liebert, Inc., 2014. DOI: 10.1089/ars.2014.5907.

19. Nin N., Sanchez-Rodriguez C., Ver L. et al. Lung histopathological findings in fatal pandemic influenza a (H1N 1). Med.Int., 2012, 36: 24–31. DOI: 10.1016/j.medin.2011.10.005.

20. Amatore D., Sgarbanti R., Aquilano K. et al. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell Microbiol., 2015, 17:131–145. DOI: 10.1111/cmi.12343.

21. Cai J., Chen Y., Seth S. et al. Inhibition of influenza infection by glutathione. Free Radic. Biol. Med., 2003, 34: 928–936. DOI: 10.1016/s0891–5849(03)00023–6.

22. Nencioni L., Iuvara A., Aquilano K. et al. Influenza a virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2. FASEB J., 2003, 17: 758–760. DOI: 10.1096/fj.02–0508fje.

23. Liu Q., Zhou Y-H., Yang Z-Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol. Immunol., 2016, 13: 3. DOI: 10.1038/cmi.2015.74.

24. Coates B. M., Staricha K. L., Koch C. M. et al. Inflammatory Monocytes Drive Influenza A Virus–Mediated Lung Injury in Juvenile Mice. J. Immunol., 2018, 200: 2391–2404. DOI: 10.4049/jimmunol.1701543.

25. Bergstrom J., Fürst P., Noree L.O., Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J. Appl. Physiol., 1974, 36 (6): 693–697. https://doi.org/10.1152/jappl.1974.36.6.693.

26. Savy G.K. Glutamine supplementation. Heal the gut, help the patient. J. Infusion Nurs., 2002, 25 (1): 65–69. https://doi.org/10.1097/00129804-200201000-00010

27. Roth E. Immune and cell modulation by amino acids. Clin. Nutr. 2007, 26: 535–544. DOI: 10.1016/j.clnu.2007.05.007.

28. Vente J. P., von Meyenfeldt M. F., van Eijk H. M. et al. Plasma-amino acid profiles in sepsis and stress. Ann. Surg., 1989, 209 (1): 57–62. https://doi.org/10.1097/00000658-198901000-00009

29. MacBurney M., Young L.S., Ziegler T.R., Wilmore D.W. A cost-evaluation of glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J. Am. Diet.Assoc., 1994, 94 (11): 1263–1266. https://doi.org/10.1016/0002-8223(94)92457-0

30. McRae M.P. Therapeutic benefits of glutamine: an umbrella review of meta-analyses. Biomed. Rep., 2017, 6 (5): 576–584. https://doi.org/10.3892/br.2017.885

31. Koksal G.M., Erbabacan E., Tunali Y. et al. The effects of intravenous, enteral and combined administration of glutamine on malnutrition in sepsis: a randomized clinical trial. Asia. Pac. J. Clin. Nutr., 2014, 23 (1): 34–40. https://doi.org/10.6133/apjcn.2014.23.1.11

32. Hu Y. M., Hsiung Y. C., Pai M. H., Yeh S. L. Glutamine administration in early or late septic phase downregulates lymphocyte PD-1/PD-L1 expression and the inflammatory response in mice with polymicrobial sepsis. JPEN – J. Parenter. Enter. Nutr., 2018, 42 (3): 538–549. https://doi.org/10.1177/0148607117695245

33. La Rosée F., La Rosée P. Ruxolitinib in COVID-19 Hyperinflammation and Haematologic Malignancies. Acta Haem., 2020, DOI: 10.1159/000510770.

34. Hu B., Zeng L.P., Yang X.L. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog., 2017, 13 (11): e1006698. https://doi.org/10.1371/journal.ppat.1006698

35. Obled C., Papet I., Breuille D. Metabolic bases of amino acid requirements in acute diseases. Curr. Opin. Clin. Nutr. Metab. Care, 2002, 5 (2): 189–197. https://doi.org/10.1097/00075197-200203000-00012

36. Meijer A. J., Dubbelhuis P. F. Amino acid signaling and the integration of metabolism. Biochem. Biophys. Res. Commun., 2004, 313: 397–403. DOI: 10.1016/j.bbrc.2003.07.012.

37. Zhang L., Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92 (5): 479–490. DOI: 10.1002/jmv.25707.

38. Grant W. B., Lahore H., McDonnell S.L. et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12 (4): 988. https://doi.org/10.3390/nu12040988

39. Cheng R.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med. Drug Discov., 2020, 5: 100028. DOI: 10.1016/j.medidd.2020.100028.

40. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009, 37: 1–17. DOI: 10.1007/s00726–009–0269–0.

41. Wu G.F.W., Bazer T.A., Davis L.A., et al. Yin. Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci., 2007, 112: 8–22.

42. Suenaga, R., Tomonaga, H., Yamane, I. et al. Intracerebroventricular injection of L-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids, 2008, 35: 139–146. DOI: 10.1007/s00726–007–0610–4.

43. Fu W.J., T. Haynes, R., Kohli, J. et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J. Nutr., 2005, 135: 714–721. DOI: 10.1093/jn/135.4.714.

44. Jobgen W.W.J., Fu H., Gao P. et al. High fat feeding and dietary L-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids, 2009, 37: 187–198. DOI: 10.1007/s00726–009–0246–7.

45. Wang J.L., Chen P., Li X. et al. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr., 2008, 138: 1025–1032. DOI: 10.1093/jn/138.6.1025.

46. Escobar J.J.W., Frank A., Suryawan H.V. et al. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am.J. Physiol. Endocrinol. Metab., 2005, 288: E914–E921. DOI: 10.1152/ajpendo.00510.2004.

47. Escobar J.J.W., Frank A., Suryawan H.V. et al. Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am. J. Physiol. Endocrinol. Metab., 2006, 290: E 612–E 621. DOI: 10.1152/ajpendo.00402.2005.

48. Yao K.Y.L., Yin W., Chu Z. et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J. Nutr., 2008, 138: 867–872. DOI: 10.1093/jn/138.5.867.

49. Li P.Y.L., Yin D., Li S. et al. Amino acids and immune function. Br.J. Nutr., 2007, 98: 237–252. DOI: 10.1017/S000711450769936X.

50. Байбарина Е.В., Чепурнова Н.С., Невежкина Т.А., Бирко О.Н., Кныш С.В. Патогенез, диагностика и иммунотерапия иммунопатологических состояний. Иммунология инфекций. Специальный выпуск. 2017, 19: 127–138. Baybarina E.V., Chepurnova N.S., Nevezhkina T.A., Birko O.N., Knysh S.V. Pathogenesis, diagnosis and immunotherapy of immunopathological conditions. Immunology of infections. Special issue. 2017, 19: 127–138.

51. Yeh C.L., C. Hsu S.L., Chen W.J. Dietary glutamine supplementation modulates Th1/Th2 cytokine and interleukin-6 expressions in septic mice. Cytokine, 2005, 31: 329–334. DOI: 10.1016/j.cyto.2005.06.001.

52. Peng X.H., Yan Z.Y., Wang P., Wang S. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients. Burns, 2006, 32: 589–593. DOI: 10.1016/j.burns.2005.11.020.

53. Pithon-Curi T.C., Schumacher R.I., Freitas J.J et al. Glutamine delays spontaneous apoptosis in neutrophils. Am.J. Physiol. Cell. Physiol., 2003, 284: C1355–C1361.

54. Rohde T., MacLean D.A., B. Pedersen B.K. Glutamine, lymphocyte proliferation and cytokine production. Scand. J. Immunol., 1996, 44: 648–650. DOI: 10.1046/j.1365–3083.1996.d01–352.x.

55. Hörig H., Spagnoli C., Filgueira L. et al. Exogenous glutamine requirement is confined to late events of T cell activation. J. Cell. Biochem., 1993, 53: 343–351. https://doi.org/10.1002/jcb.240530412

56. Keshavarz M., Namdari H., Farahmand M. et al. Association of polymorphisms in inflammatory cytokines encoding genes with severe cases of influenza a/H1N1 and B in an Iranian population. Virol J., 2019, 16: 79. https://doi.org/10.1186/s12985–019–1187–8

57. Sanei F., Wilkinson T. Influenza vaccination for patients with chronic obstructive pulmonary disease: understanding immunogenicity, efficacy and effectiveness. Ther. Adv. Respir. Dis., 2016, 10: 349–367. DOI: 10.1177/1753465816646050.

58. Vasileiou E., Sheikh A., Butler C. et al. Johnston SL. Effectiveness of influenza vaccines in asthma: a systematic review and meta-analysis. Clin. Infect. Dis., 2017, 65: 1388–1395. DOI: 10.1093/cid/cix524.

59. Gombart A.F., Pierre A., Maggini S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients, 2020, 12, 236. DOI: 10.3390/nu12010236.

60. Jayawardena R., Sooriyaarachchi P., Chourdakis M. et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diab. Metab. Syndrome: Clinical Research and Reviews, 14 (2020) 367–382. https://doi.org/10.1016/j.dsx.2020.04.015

61. Shenkin A. Micronutrients in health and disease. Post.Med.J., 2006, 82 (971): 559–567. DOI: 10.1136/pgmj.2006.047670.

62. Wu G. Dietary protein intake and human health. Food Func., 2016, 7: 1251–1265. DOI: 10.1039/C5FO01530H.


Review

For citations:


Dmitriev A.V., Machulina I.A., Shestopalov A.E. Role of pharmaco- and micronutrients in nutritional metabolic therapy of COVID-19 and other viral infections. Medical alphabet. 2021;(4):56-63. (In Russ.) https://doi.org/10.33667/2078-5631-2021-4-56-63

Views: 491


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)