Preview

Medical alphabet

Advanced search

Skeletal muscle hormone activity and non-alcoholic fatty liver disease

https://doi.org/10.33667/2078-5631-2020-17-31-34

Abstract

Currently, a large number of studies have been published supplementing our knowledge of sarcopenia and its effect on the development of metabolic disorders, including the formation of non-alcoholic fatty liver disease (NAFLD). This data allows a new look at the pharmacological and non-pharmacological ap proaches to the treatment of NAFLD, based on basic physiological processes, including the biological axis the ′muscle – the liver′. This provides a compelling rationale for studying skeletal muscle as the main therapeutic target for NAFLD and metabolic syndrome.

About the Authors

E. I. Sas
Military Medical Academy n. a. S. M. Kirov of the Ministry of Defense of Russia
Russian Federation
Saint Petersburg


V. A. Barnakova
Military Medical Academy n. a. S. M. Kirov of the Ministry of Defense of Russia
Russian Federation
Saint Petersburg


References

1. Williams C. D., Stengel J., Asike M. I. et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. // Gastroenterology. 2011; N 140. S. 124–131.

2. Vilar-Gomez E., Martinez-Perez Y., Calzadilla-Bertot L. et al. Weight Loss via Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015. N 42. S. 44–52.

3. Hong H. C., Hwang S. Y., Choi H. Y. et al. Relationship between sarcopenia and nonalcoholic fatty liver disease: the Korean Sarcopenic Obesity Study. Hepatology. 2014; 59: 1772–1778.

4. Lim S., Kim J. H., Yoon J. W. et al. Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care. 2010. N 33. S. 1652–1654.

5. Kim T. N., Park M. S., Yang S. J. et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010; 33: 1497–1499.

6. Lee Y. H., Jung K. S., Kim S. U. et al. Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: nationwide surveys (KNHANES 20082011). J Hepatol. 2015; 63: 486–493.

7. Kim S. W. Jung H. W. Which one is associated with nonalcoholic fatty liver disease? Small muscle mass or large fat mass. Hepatology. 2015; 61: 1764.

8. Issa D., Alkhouri N., Tsien C. et al. Presence of sarcopenia (muscle wasting) in patients with nonalcoholic steatohepatitis. Hepatology. 2014; 60: 428–429.

9. Dasarathy J., Periyalwar P., Allampati S. et al. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014; 34: e118–e127.

10. Bredella M. A., Ghomi R. H., Thomas B. J. et al. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring). 2010; 18: 2227–2233.

11. Giusto M., Lattanzi B., Albanese C. et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol. 2015; 27: 328–334.

12. Henningsen J., Rigbolt K. T., Blagoev B., Pedersen B. K., Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics. 2010; 9: 2482–2496.

13. McPherron A.C., Guo T., Bond N. D., Gavrilova O. Increasing muscle mass to improve metabolism. Adipocyte. 2013; 2: 92–98.

14. Dasarathy S. Is the adiponectin-AMPK-mitochondrial axis involved in progression of nonalcoholic fatty liver disease? Hepatology. 2014; 60: 22–25.

15. Bonala S., McFarlane C., Ang J. et al. Pid1 induces insulin resistance in both human and mouse skeletal muscle during obesity. Mol Endocrinol. 2013; 27: 1518–1535.

16. Zhang C., McFarlane C., Lokireddy S. et al. Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway. Diabetologia. 2011; 54: 1491–1501.

17. Dasarathy S., Muc S., Runkana A. Mullen K. D. Alteration in body composition in the portacaval anastamosis rat is mediated by increased expression of myostatin. Am J Physiol Gastrointest Liver Physiol. 2011 Oct;301(4): G731–8. doi: 10.1152/ajpgi.00161.2011.

18. Seldin M. M., Peterson J. M., Byerly M. S., Wei Z., Wong G. W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012; 287: 11968–11980.

19. Polyzos S. A., Kountouras J., Anastasilakis A. D., Geladari E. V. Irisin in patients with nonalcoholic fatty liver disease. Metabolism. 2014; 63: 207–217.

20. Glass C., Hipskind P., Tsien C., Malin S. K. et al. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: a prospective controlled study. J Appl Physiol. 1985; 2013: 559–565.

21. Dasarathy S, Muc S, Hisamuddin K, Edmison JM, Dodig M, McCullough AJ, Kalhan SC. Altered expression of genes regulating skeletal muscle mass in the portacaval anastomosis rat. Am J Physiol Gastrointest Liver Physiol 292: G1105–G1113, 2007.

22. Sanzgiri UY, Srivatsan V, Muralidhara S, Dallas CE, Bruckner JV. Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures. Toxicol Appl Pharmacol 143: 120–129, 1997.

23. Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, Eghtesad B, Singh K, Fu X, Dubyak G, McDonald C, Almasan A, Hazen SL, Naga Prasad SV, Dasarathy S. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 303: E 983–E 993, 2012.

24. Bucci L, Hickson JF, Pivarnik JM, Wolinsky I, McMa- hon JC, Turner SD. Ornithine ingestion and growth hormone release in bodybuilders. // Nutrition Research 1990; 10 (3): 239–245.


Review

For citations:


Sas E.I., Barnakova V.A. Skeletal muscle hormone activity and non-alcoholic fatty liver disease. Medical alphabet. 2020;(17):31-34. (In Russ.) https://doi.org/10.33667/2078-5631-2020-17-31-34

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)