Preview

Medical alphabet

Advanced search

Personalized algorithm for formation of risk groups for progression and development of complications of atrial fibrillation in hypertension in combination with extracardial diseases

https://doi.org/10.33667/2078-5631-2020-13-16-19

Abstract

Aim. To develop a personalized algorithm for predicting the progression of atrial fibrillation and its complications in hypertension in combination with extracardial diseases. Methods. The observational cohort study observed 308 men aged 45–60 years with AF and AH in combination with extracardial pathology: diabetes mellitus (DM; n = 40), diffuse toxic goiter (TTZ; n = 42); hypothyroidism (GT; n = 59), abdominal obesity (AO; n = 64) and chronic obstructive pulmonary disease (COPD; n = 47). The comparison group consisted of 56 patients without extracardial pathology. Clinical, laboratory, anthropometric data, results of daily ECG monitoring and echocardiography were evaluated. All statistical calculations were performed in Rstudio program. Results. Found significant predictors of progression of atrial fibrillation: indicators of remodeling: galectin-3, which increase by 1 ng/l increases the risk of progression to 1.0030 (1.0006; 1.0050) times (p = 0.016); PL (p < 0.001), with an increase of 1 cm, the risk increases to 2.67 (1.58; 4.65) times; KDR (p = 0.025), with the increase of 1 cm decrease the chance of atrial fibrillation recurrence in 0.13 (0.02; 0.65) and LVMWI, where the increase LVMWI 1 g/m 2 increases the risk of progression of AF at 0.9 times; also, the inflammation index-with an increase in IL-6 by 1 PG/l, the risk increases by 0.6 times, and the vascular stiffness marker MMP-9 – an increase by 1 ng/ml increases the risk of progression by 0.16 times. It was determined that emergency hospitalization for the progression of CHF during the year in patients with atrial fibrillation was significantly more common in all clinical groups, except for patients with hypothyroidism. Statistically significant predictors of hospitalization for CHF progression were revealed: increase of LP size by 1 cm increases CHF risk by 5.04 (1.80; 16.10) times; an increase in NT-proBNP by 1 pg/l increases the risk of CHF by 1.01 (1.00; 1.02) times. The comparative assessment of the incidence of cardioembolism in these groups, although not showed a statistically significant difference, but in percentage terms was higher in patients with atrial fibrillation – 11.2 vs. 6.0 % in patients without atrial fibrillation, the relative risk of confidence interval – 3.736 (0.500; 26.900). Conclusion. The developed personalized algorithm can be used to assess the prognosis of progression of atrial fibrillation and the development of its complications in hypertension in combination with extracardial diseases

About the Authors

L. D. Khidirova
Novosibirsk State Medical University
Russian Federation
Novosibirsk


D. A. Yakhontov
Novosibirsk State Medical University
Russian Federation
Novosibirsk


V. L. Lukinov
Institute of Computational Mathematics and Mathematical Geophysics
Russian Federation
Novosibirsk


References

1. Фибрилляция предсердий и артериальная гипертония: гендерные особенности желудочково-предсердного ремоделирования при сохраненной фракции выброса левого желудочка / Ж. Д. Кобалава [и др.] Рациональная фармакотерапия в кардиологии. 2017; 4: 541–549.

2. A consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) council on hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulaci on Cardiaca y Electrofisiologıa (SOLEACE). Gregory Y. H. Lip [et al.]. Europace. 2017; 19 (6): 891–911.

3. Коморбидная патология в клинической практике. Клинические рекомендации. Оганов Р. Г. и др. Кардиоваскулярная терапия и профилактика. 2017; 16 (6): 5–56.

4. Прогностическая модель развития артериальной гипертензии. В. Н. Сорокина и др. Медицинский журнал. 2016; 2: 115–118.

5. ESC/ESH guidelines for the management of arterial hypertension were presented at the 28th scientific meeting of the European Society of hypertension in Barcelona. 2018. Bryan Williams [et al.]. Journal of Hypertension. 2018; (36): 1953–2041.

6. Effect of angiotensinconverting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: The Captopril Prevention Project (CAPPP) randomised trial. L. Dansson [et al.]. Lancet. 1999. 353 (9153): 611–616.

7. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. A. Patel [et al.]. Lancet. 2007; 370 (9590): 829–840.

8. Шальнова С. А. Анализ смертности от сердечно-сосудистых заболеваний в 12 регионах Российской Федерации, участвующих в исследовании «Эпидемиология сердечно-сосудистых заболеваний в различных регионах России». С. А. Шальнова. Российский кардиологический журнал. 2012 (5): 6–11.

9. Коваль С. Н., Снегурская И. А. Факторы риска фибрилляции предсердий и нерешенные проблемы ее профилактики. Артериальная гипертония. 2016 (4): 16–26.

10. Jain K. K. Personalized Medicine. Trends Mol. Med. 2002; 4 (6): 548–558.

11. Крысюк О. Б., Обрезан А. Г., Паномарен ко Г. Н. Проблемы персонифициронной медицины в клинике внутренних болезней. Вестник Санкт-Петербургского унивеситета 2006; 11 (1): 16–21.

12. Herrmann S. M., Paul М. Studying genotype-phenotype relationships: cardiovascular disease as an example. J. Mol. Med. 2002; 123: 1673–1671.

13. Ginsburg G. S., McCarthy.I.J. Personalized medicine: Revolutionizing drug discovery and patient care. Trends Biotechnol. 2001; 19: 491–496.

14. Lindpainlner K. The impact of pharmacogenetics and pharmacogcnomics on drug discovery. Nat. Rev. Drug Discov. 2002. Vol. 1. P. 463–469.

15. Коморбидная патология в клинической практике. Алгоритмы диагностики и лечения. Кардиоваскулярная терапия и профилактика. 2019; 18 (1): 5–66.

16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719765/BMJOpen. 2019; 9(8): e025579. Published online 2019 Aug 30. doi: 10.1136/bmjopen-2018–025579 Predicting the risk of stroke among patients with type 2 diabetes: a systematic review and meta-analysis of C-statistics. Mohammad Ziaul Islam Chowdhury, Fahmida Yeasmin, Doreen M Rabi, Paul E Ronksley, and Tanvir C Turin.


Review

For citations:


Khidirova L.D., Yakhontov D.A., Lukinov V.L. Personalized algorithm for formation of risk groups for progression and development of complications of atrial fibrillation in hypertension in combination with extracardial diseases. Medical alphabet. 2020;(13):16-19. (In Russ.) https://doi.org/10.33667/2078-5631-2020-13-16-19

Views: 387


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)