Preview

Medical alphabet

Advanced search

Evaluation of efficiency of Fas-mediated apotosis of peripheral blood lymphocytes in patients with type 1 diabetes mellitus

https://doi.org/10.33667/2078-5631-2019-3-22(397)-26-32

Abstract

The Fas/FasL system is known to play a central role in maintaining peripheral self-tolerance and tissue homeostasis of the organism [12, 18]. Fas-mediated apoptosis is induced by binding of the Fas(CD 95/APO-l/TNFRSF6)-receptor to the Fas(CD 95L/CD 178/TNFSF6)-ligand on the respective cells [24]. Triggering of the expression of cell surface Fas receptors (Fas) regulates the elimination of autoreactive T- and B-lymphocytes by apoptosis. It is known that impaired activation of Fas-mediated apoptosis in individual subpopulations of T-cells plays an important role in the pathogenesis of type 1 diabetes mellitus (T1DM). The main key point in the development of T1DM is resistance to apoptosis of activated autoreactive T-lymphocytes, which migrate from the bloodstream to the pancreas and take an active part in β-cells destruction. Аt the present time, most of the results on the study of Fas-mediated apoptosis in T1DM were obtained in experiments in vitro [11, 18, 31]. There is no doubt that in vivo autoimmune pathological changes are more profound, and extrapolation of the results obtained in the experiment to the organism is not always valid. Тhereby, it seems relevant to evaluate the efficiency of Fas-mediated apoptosis of T-lymphocytes in the blood of patients with T1DM, depending on the compensation phase and the duration of the disease. In the article, the markers of Fas-mediated apoptosis of peripheral blood lymphocytes in patients with type 1 diabetes mellitus and individuals with high risk of T1DM development have been studied. The surface expression of Fas in individual subpopulations of T-lymphocytes was еvaluated. The inhibition of Fas-mediated apoptosis of autoreactive CD 95+-cells by soluble Fas-receptor was detected in patients with decompensation of T1DM. In compensation phase of T1DM Fas-mediated apoptosis of lymphocyte was successfully realized via the soluble Fas ligand (sFasL). The increased level of soluble FasL was revealed in compensation phase of T1DM and in individuals with high risk of T1DM development. This probably has a protective value, since the soluble FasL is involved in the removal of the peripheral blood autoreactive CD 95+-cells.

About the Authors

A. V. Lugovaya
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



N. M. Kalinina
First Saint Petersburg State Medical University n. a. I. P. Pavlov; All-Russian Centre for Emergency and Radiation Medicine n. a. A. M. Nikiforov
Russian Federation

Saint Petersburg



V. F. Mitreikin
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



Yu. V. Emanuel
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



Yu. P. Kovaltchuk
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



A. V. Artyomova
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



V. L. Emanuel
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



Yu. V. Musikhina
City Emergency Station
Russian Federation

Saint Petersburg



V. L. Emanuel
First Saint Petersburg State Medical University n. a. I. P. Pavlov
Russian Federation

Saint Petersburg



References

1. Васина Л. В., Луговая А. В., Петрищев Н. Н., Серебряная Н. Б. Патогенетическое значение изменения относительного содержания аннексин V + -мононуклеаров и CD 59 + -лимфоцитов периферической крови при остром коронарном синдроме. Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2008. (1): 14–24.

2. Зурочка А. В., Хайдуков С. В., Кудрявцев И. В., Черешнев В. А. Проточная цитометрия в биомедицинских исследованиях. РИО Уро РАН. — Екатеринбург. — 2018. — 720 с.

3. Луговая А. В., Калинина Н. М., Митрейкин В. Ф., Ковальчук Ю. П., Артемова А. В., Белолипетская Ю. Р., Гаврилова Е. А., Рузанова О. С., Эмануэль В. С., Эмануэль Ю. В., Эмануэль В. Л. Апоптоз и пролиферация Т-лимфоцитов периферической крови как альтернативные процессы в патогенезе сахарного диабета первого типа. Медицинский алфавит. Серия «Современная лаборатория». 2019. 1 (4): 16–20.

4. Петрищев Н. Н., Васина Л. В., Луговая А. В. Содержание растворимых маркеров апоптоза и циркулирующих аннексин V-связанных апоптотических клеток в крови больных острым коронарным синдромом. Вестник Санкт-Петербургского государственного университета. 2008. (1): 14–24.

5. Фефелова Е. В., Терешков П.П, Максименя М. В., Цыбиков Н. Н. Индукция апоптоза лимфоцитов под влиянием гомоцистеина в культуре клеток периферической крови больных ИБС. Электронный научно-образовательный вестник «Здоровье и образование в XXI веке». 2016. 18 (11): 36–39.

6. Хаитов Р. М. Иммунология. М. ГЭОТАР-Медиа. 2018. — 496 с.

7. Abstracts of 52nd EASD Annual Meeting. Diabetologia. 2016. 59 (1): 581 р.

8. Baidwan S., Chekuri A., Hynds D. L., Kowluru A. Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C 3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin. Apoptosis. 2017. 22 (11): 1380–1393.

9. Bhatraju P. K., Robinson-Cohen C., Mikacenic C. et al. Circulating levels of soluble Fas (sCD 95) are associated with risk for development of a nonresolving acute kidney injury subphenotype. Crit. Care. 2017. 21 (217): 1–9. DOI: 10.1186/s13054–017–1807-x.

10. Blander J. M. The many ways tissue phagocytes respond to dying cells. Immunol. Rev. 2017. 277 (1): 158–173.

11. Cantley J., Davenport A., Vetterli L. et al. Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass. Diabetologia. 2019. 62 (1): 99–111.

12. Esposti M. D., Matarrese P., Tinari A. et al. Changes in membrane lipids drive increased endocytosis following Fas ligation. Apoptosis. 2017. 22 (5): 681–695.

13. Garg A. D., Romano E., Rufo N., Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy mechanisms and clinical translation. Cell Death Differ. 2016. 23: 938–951.

14. Green D. R. Cell death and the immune system: getting to how and why. Immunol. Rev. 2017. 277 (1): 4–8.

15. Green D. R., Oguin T. H., Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016. 23: 915–926.

16. Hakonen E., Chandral V., Fogarty C. L. et al. MANF protects human pancreatic beta cells against stress-induced cell death. Diabetologia. 2018. 61 (10): 2202–2214.

17. Hammes H. P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018. 61 (1): 29–38.

18. Joglekar M. V., Trivedi P. M., Kay T. W. et al. Human islet cells are killed by BID-independent mechanisms in response to FAS ligand. Apoptosis. 2016. 21 (4): 379–389.

19. Li X., Shang B., Li Y. et al. IFNγ and TNFα synergistically induce apoptosis of mesenchymal stem/stromal cells via the induction of nitric oxide. Stem Cell Res. Ther. 2019. 10 (18): 1–11. DOI: 10.1186/s13287–018–1102-z.

20. Liang L., Ge K., Zhang F. et al. The suppressive effect of co-inhibiting PD-1 and CTLA-4 expression on H22 hepatomas in mice. Cell. Mol. Biol. Lett. 23 (58): 1–11. 2018. DOI: 10.1186/s11658–018–0122–0.

21. Liphaus B. L., Kiss M. H.B., Carrasco S. et al. Increased serum sFas, sTRAIL, and reduced sFasL in juvenile-onset systemic lupus erythematosus. Clin. Rheumatol. 2017. 36 (12): 2847–2852.

22. Nabipour I., Kalantarhormozi M., Assadi M. et al. Influence of levothyroxine treatment on serum levels of soluble Fas (CD 95) and Fas Ligand (CD 95L) in chronic autoimmune hypothyroidism. Endocr. 2010. 38 (3): 406–411.

23. Rieux-Laucat F., Magérus-Chatinet A., Neven B. The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J. Clin. Immunol. 2018. 38 (5): 558–568.

24. Rossin A., Lounnas N., Jérôme Durivault J. et al. The Btk-dependent PIP5K1γ lipid kinase activation by Fas counteracts FasL-induced cell death. Apoptosis. 2017. 22 (11): 1344–1352.

25. Sachet M., Liang Y. Y., Oehler R. The immune response to secondary necrotic cells. Apoptosis. 2017. (22) 10: 1189–1204.

26. Shukla V., Shakya A. K., Perez-Pinzon M.A. et al. Cerebral ischemic damage in diabetes: an inflammatory perspective. Journal of Neuroinflammation. 2017. 14 (21): 1–22. DOI: 10.1186/s12974–016–0774–5.

27. Sidarala V., Kowluru A. Exposure to chronic hyperglycemic conditions results in Rasrelated C 3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic β-cells. Apoptosis. 2017. 22 (5): 597–607.

28. Tchorzewski H., Glowacka M., Banasik P. et al. Activated T lymphocytes from patients with high risk of type I diabetes mellitus have different ability to produce interferon-γ, interleukin-6 and interleukin-10 and undergo anti-CD 95 induced apoptosis after insulin stimulation. Immunology Letters. 2001. 75: 225–234.

29. Uchiyama R., Tsutsui H. Caspases as the Key Effectors of Inflammatory Responses Against Bacterial Infection. Immunol. Ther. Exp. 2015. 63 (1): 1–13.

30. Vives-Pi M., Rodríguez-Fernández S., Pujol-Autonell I. How apoptotic β-cells direct immune response to tolerance or to autoimmune diabetes: a review. Apoptosis. 2015. (20) 3: 263–272.

31. Xv J., Ming Q., Wang X. et al. Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell Tissue Res. 2017. 368 (2): 239–248.

32. Zhang M., Zhang L., Hu J. et al. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia. 2016. 59 (11): 2435–2447.


Review

For citations:


Lugovaya A.V., Kalinina N.M., Mitreikin V.F., Emanuel Yu.V., Kovaltchuk Yu.P., Artyomova A.V., Emanuel V.L., Musikhina Yu.V., Emanuel V.L. Evaluation of efficiency of Fas-mediated apotosis of peripheral blood lymphocytes in patients with type 1 diabetes mellitus. Medical alphabet. 2019;3(22):26-32. (In Russ.) https://doi.org/10.33667/2078-5631-2019-3-22(397)-26-32

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)