Preview

Medical alphabet

Advanced search

Thermography screening of thyroid gland: how to distinguish health from pathology

https://doi.org/10.33667/2078-5631-2019-3-29(404)-32-39

Abstract

This research is organized to investigate if the thermal gradient (Tgrad) (difference between temperature maximum and minimum in the region of interest over thyroid gland on neck thermogramm) could be a marker of normal/ abnormal thyroid function and, if so, find out the cut-off value and check it screening validity.

Materials and methods. Thermography examination was performed using a TVS-300 med (S-Petersburg, Russia) thermal imaging camera with a resolution of 384 × 288 pixels and sensitivity was <0.04 °C according to European Association of Thermology standards. Anterior neck thermografic images were performed and collected in cloud database, where, by mean of program tools, region of interest were marked and Tgrad calculated. Totally 1025 pts with different thyroid pathology (group 1: female 944, age 15–90 (55,4±15,8), male 81, age 14–86 (53,6±18,8)), and 395 healthy persons (group 2: male 324 age 17–26 (21,8±4,4), female 71 age 16–70т (34,6±12,7)) were investigated. To check the quality of the model another 314 persons (18 male and 296 female) were studied in screening mode.

Results. Calculated Tgrad value was 1,65±0,53 °C, Ме 1,53(1,24; 1,90) and 0,98±0,23 °C, Me 1,01(0,82; 1,15) for group 1 and 2 accordingly. By mean of binary logistic regression analysis we found good correlation between Tgrad value and presence/absence of thyroid pathology: significance level р<0,0001, χ² = 838,84, df = 1, β 0 = 9,984, β 1 = –9,033. Area under curve in ROC analysis was 0,922 (95 % CI 0,908; 0,935), р<0,001; optimal cut off value for Tgrad was 1,21 °C for maximal sensitivity (79,8 %) and specificity (83,3 %). In screening evaluation, according to optimal cut-off value 1,2 °C for Tgrad , 82,2 % of cases were classified correctly: true-positive and true-negative results were achieved in 258 from 314 pts.

Conclusion. Thermography test, based on Tgrad value calculation, could help to distinguish persons with normal and abnormal function of thyroid gland.

About the Authors

I. M. Dolgov
Federal Scientific and Clinical Center of Sport Medicine Federal Medical and Biological Agency; LLO “Dignosys”
Russian Federation
Moscow


M. G. Volovik
Privolzhsky Research Medical University; LLO “Dignosys”
Russian Federation
Nizhny Novgorod; Moscow


O. V. Nikitina
Institute of Emergency Medicine named after N. V. Sklifosovsky
Russian Federation
Moscow


T. P. Shkurat
Southern Federal University
Russian Federation
Rostov on Don


References

1. Haugen B. R., Alexander E. K., Bible E. K. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer // Thyroid. 2016 Jan;26(1):1–133. DOI:10.1089/thy.2015.0020.

2. Состояние онкологической помощи населению России в 2017 году. Под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой М.: МНИОИ им. П. А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. 236 с. ISBN 978–5–85502–237–7.

3. Воловик М. Г., Долгов И. М. Современные возможности и перспективы развития медицинского тепловидения // Медицинский алфавит. Современная функциональная диагностика. 2018. 25(3):45–51.

4. Зеновко Г. И. Результаты термографического обследования и хирургического лечения заболеваний щитовидной железы // Вестник хирургии. 1988. № 3. С. 74–76.

5. Камардин Л. Н., Кузьмичев С. Термография в дифференциальной диагностике узлового зоба и рака щитовидной железы // Вестник хирургии имени И. И. Грекова 1983. № 5. С. 70–74.

6. Орловская С. С. Термографические, эхотермографические и цитологические аспекты гипертиреоза. Автореф. дис… канд. мед. наук. ВСНЦ СО РАМН. М., 1995. 25 с.

7. Филатов А. А., Святов А. В. Ультразвуковое и термографическое исследование щитовидной железы // Медицинская радиология. 1988. № 3. С. 78–82.

8. Шацова Е. Н., Попов В. А. Возможности ИК-термографии в диагностике тиреоидной патологии // Проблемы эндокринологии 1989. Т. 35, С. 34–37.

9. Медицинское тепловидение. Учебное пособие (Ачкасов Е. Е., Воловик М. Г., Долгов И. М., Колесов С. Н.). М.: ИНФРА-М, 2019. 218 с., илл. www.dx.doi.org/10.12737/textbook_5ce64de5707d59.18786697

10. D’Arbo Alves M. L., Andrade J., Cherri J. et al. Papel da termografia na sele¸c˜ao de n´odulos tireoidianos de indicac¸˜ao ciru´rgica // Arquivo Brasileiro de Endocrinologia e Metabolismo 1988; Vol. 32, Is. 4.

11. Патент RU 2077258 (13) С1 «Способ диагностики гипофункции щитовидной железы». Попов В. А., Шацова Е. Н., Романова Т. Б., 1993.

12. Патент RU 2106109 (13) С1 «Способ диагностики гиперфункции щитовидной железы». Попов В. А., Шацова Е. Н., Романова Т. Б., Попова Н. С., 1994.

13. Ashok L., Sivanandam S. Diagnosis of thyroid disorder using infrared thermography // International Journal of Pure and Applied Mathematics 2018, 119(7): 1085–1092. DOI:10.1109/ICECA.2017.8203718

14. De Souza M. A., Bueno A. P., Magas V. Imaging Fusion between Anatomical and Infrared Thermography of the Thyroid Gland // Conference: 2019 Global Medical Engineering Physics Exchanges / Pan American Health Care Exchanges (GMEPE/PAHCE). March 2019. DOI:10.1109/GMEPE-PAHCE.2019.8717347

15. Vaz V. A.S. Diagnosis of Hypo and Hyperthyroid Using MLPN Network // International Journal of Innovative Research in Science, Engineering and Technology July 2014. 3 (7): 14314–14323.

16. Gavriloaia G., Ghemigian A. M., Gavriloaia M. R. Infrared signature analysis of the thyroid tumors // European Conferences on Biomedical Optics. International Society for Optics and Photonics, Volume 7371, 2009. DOI:http://hdl.handle.net/10.1117/12.831756

17. Gonzalez J. R., Rodrigues E. O., Damiao C. P. et al. An Approach for Thyroid Nodule Analysis Using Thermographic Images // Application of Infrared to Biomedical Sciences, Springer Singapore, pp. 451–475, 2017. DOI:10.1007/978–981–10–3147–2_26

18. Ammer K., Ring E. F.J. Standard procedures in Medical Infrared Imaging. In book: Medical Infrared Imaging. Principles and Practice, Chapter: 32, Publisher: CRC Press, Taylor & Francis Group, 2012. Editors: Mary Diakides, Joseph D Bronzino, Donald R Peterson, pp.32.1–32.14.

19. Gros C., Bourjat P., Soutter J. [Thermographic exploration of the thyroid body] // J Radiol Electrol Med Nucl. 1968 Nov;49(11):791–797. PMID: 5759883 [in French].

20. Rudolph H., Vaubel W. E. [Infrared thermometry in thyroid diseases] // Munch Med Wochenschr. 1968 Jan 26;110(4):198–202. PMID: 5695029 [in German].

21. Gopinath M. P., Prabu S., Classification of thyroid abnormalities on thermal image: a study and approach // IIOABJ, May 2016. Special issue (SCMDSA). Vol. 7, 5, 41–57.

22. Cetinkaya E. A., Koc K., Atilgan S. et al. Digital Infrared Thermal Imaging Analysis of Thyroid Nodules // Current Medical Imaging Reviews, 2018, Volume 14, Issue 5. DOI:10.2174/1573405613666170712143944.

23. Rossato M., Burei M., Vettor R. Neck thermography in the differentiation between diffuse toxic goiter during methimazole treatment and normal thyroid // Endocrine Imaging 2015; Vol. 28, pp. 1016–1017. DOI:10.1007/s12020–014–0305-z.


Review

For citations:


Dolgov I.M., Volovik M.G., Nikitina O.V., Shkurat T.P. Thermography screening of thyroid gland: how to distinguish health from pathology. Medical alphabet. 2019;3(29):32-39. (In Russ.) https://doi.org/10.33667/2078-5631-2019-3-29(404)-32-39

Views: 817


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)