Pd-1/pd-l1 pathway at immunotherapy of renal cell carcinoma. Part 1: functions of signal way pd-1/pd-l1 for immune system and immunotherapy. Part I
Abstract
About the Authors
D. S. NaberezhnovRussian Federation
A. A. Morozov
Russian Federation
M. F. Fridman
Russian Federation
A. A. Alferov
Russian Federation
V. V. Bazaev
Russian Federation
N. E. Kushlinsky
Russian Federation
References
1. Матвеев В. Б., Волкова М. И. Последовательная таргетная терапия при диссеминированном раке почки. Онкоурология. 2013; 1: 28-33. O0I:10.17650/1726-9776-2013-9-1-28-33.
2. Ljungberg B., Bensalah K., Canfield S., Oabestani S., Hofmann F., Hora M., Kuczyk M. A., Lam T., Marconi L., Merseburger A. S., Mulders P., Powles T., Staehler M., Volpe A., Bex A. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015; 67 (5): 913-924. 0OI: 10.1016/j.eururo.2015.01.005. PMI0: 25616710.
3. Moch H. WHO classification 2016 and first S3 guidelines on renal cell cancer: What is important for the practice? Pathologe. 2016; 37 (2): 127-133.
4. Бежанова С. Д. Опухоли почек. Новая классификация опухолей урогенитальной системы Всемирной организации здравоохранения 2016 г. Архив патологии. 2017; 79 (2): 48-52.
5. Михайленко Д. С., Колпаков А. В., Кушлинский Н. Е. Соматические мутации - основные события канцерогенеза при светлоклеточном раке почки. Молекулярная медицина. 2016; 14 (4): 3-9.
6. Ferlay J., Soerjomataram I., Oikshit R., Eser S., Mathers C., Rebelo M., Parkin O.M., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GL0B0CAN2012. Int. J. Cancer. 2015; 136 (5): E359-E386. OOI: 10.1002/ijc.29210. PMIO: 25220842.
7. Алексеев Б. Я., Калпинский А. С. Рак почки. Глава 18.2. Онкология. Национальное руководство. Краткое издание (Под рук. В. И. Чиссова и М. И. Давыдова). М.: Издательская группа «ГЭОТАР-Медиа». 2017; 421-436.
8. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. (Под ред. М. И. Давыдова и Е. М. Аксель). М.: Издательская группа РОНЦ 2014. 226 с.
9. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность) (Под ред. Каприна А. Д., Старинского В. В., Петровой Г. В.). М.-ФГБУ «Московский научно-исследовательский онкологический институт им. П. А. Герцена» - филиал ФГБУ «Национальный медицинский исследовательский радиологический центр» Минздрава России. 2017.250 с.
10. Чиссов В. И., Давыдов М. И. (под ред.). Онкология. Национальное руководство. Краткое издание. М.: Издательская группа «ГЭОТАР-Медиа». 2017. 624 с.
11. Семков А. С., Махсон А. Н., Петерсон С. Б., Широкорад В. И. Хирургическое лечение костных метастазов рака почки. Онкоурология. 2010; 4: 10-15. 00I:10.17650/1726-9776-2010-6-4-10-15.
12. Кострицкий С. В., Широкорад В. И., Семенов Д. В., Пташников Д. А., Щупак М.Ю., Махсон А. Н., Манихас Г. М., Шестаев А. Ю., Костюк И. П., Карлов П. А., Митрофанов П. П. Хирургическое лечение больных с метастазами рака почки в позвоночник. Онкоурология. 2014; 3: 40-42. 00I:10.17650/1726-9776-2014-10-3-40-42.
13. Дьяков И. Н., Зырянов С. К. Клинико-экономический анализ 1-й и 2-й линий таргетной терапии распространенного почечно-клеточного рака. Онкоурология. 2016; 12 (4): 43-51. 00I:10.17650/1726-9776-2016-12-4-43-51.
14. Носов Д. А., Ворошилова Е. А., Саяпина М. С. Современное представление об алгоритме лекарственного лечения и оптимальной последовательности использования таргетных препаратов. Онкоурология. 2014; 3: 12-21. 00I:10.17650/1726-9776-2014-10-3-12-21.
15. Motzer R. J., Escudier B., McDermott O.F., George S., Hammers H. J., Srinivas S., Tykodi S. S., Sosman J. A., Procopio G., Plimack E. R., Castellano O., Choueiri T.K, Gurney H., Donskov F., Bono P., Wagstaff J., Gauler T. C., Ueda T., Tomita Y., Schutz F. A., Kollmannsberger C., Larkin J., Ravaud A., Simon J.S., Xu L. A., Waxman I. M., Sharma P.; CheckMate 025 Investigators.CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015; 373 (19): 1803-1813. 00I: 10.1056/NEJMoa1510665. PMIO: 26406148.
16. Tomita Y., Fukasawa S., Shinohara N., Kitamura H., Oya M., Eto M., Tanabe K., Kimura G., Yonese J., Yao M., Motzer R. J., Uemura H., McHenry M.B., Berghorn E., Ozono S. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup analysis from the CheckMate 025 study. Jpn J Clin Oncol. 2017; 47 (7): 639-646. doi: 10.1093/jjco/hyx049.
17. Koshkin V.S., Rini B. I. Emerging therapeutics in refractory renal cell carcinoma. Expert 0pin. Pharmacother. 2016; 17 (9): 1225-1232. 00I: 10.1080/14656566.2016.1182987. PMIO: 27112171.
18. McDermott O.F., Sosman J. A., Sznol M., Massard C., Gordon M. S., Hamid O., Powderly J. D., Infante J. R., Fassà M., Wang Y. V., Zou W., Hegde P.S., Fine G. D., Powles T. Atezolizumab, an Anti-Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates From a Phase Ia Study. J. Clin. 0ncol. 2016; 34 (8): 833-842. DOI: 10.1200/JCO.2015.63.7421. PMID: 26755520.
19. Grünwald V. Checkpoint Blockade - a New Treatment Paradigm in Renal Cell Carcinoma. 0ncol. Res. Treat. 2016; 39 (6): 353-358. DOI: 10.1159/000446718. PMIO: 27259695.
20. Schmidinger M. Clinical decision-making for immunotherapy in metastatic renal cell carcinoma. Curr. 0pin. Urol. 2018; 28 (1): 29-34. DOI: 10.1097/M0U.0000000000000456. PMIO: 29045250.
21. Lee J. Y., Lee H. T., Shin W., Chae J., Choi J., Kim S. H., Lim H., Won Heo T., Park K. Y., Lee Y. J., Ryu S. E., Son J. Y., Lee J. U., Heo Y. S. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy Nat Commun. 2016; 7: 13354. doi: 10.1038/ ncomms13354.
22. Mataraza J.M., Gotwals P. Recent advances in immuno-oncology and its application to urological cancers. BJU Int. 2016; 118 (4): 506-514. DOI: 10.1111/bju.13518. PMIO: 27123757.
23. Callahan M. K., Wolchok J. O. At the bedside: CTLA-4- and PO-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. 2013; 94 (1): 41-53. O0I: 10.1189/jlb.1212631. PMIO: 23667165.
24. Poprach A., Lakomy R., Büchler T. Immunotherapy of Renal Cell Carcinoma. Klin. Onkol. 2017; 30 (Suppl. 3): 55-61. O0I: 10.14735/ amko20173S55. PMIO: 29239194.
25. Sakamuri O., Glitza I. C., Betancourt Cuellar S. L., Subbiah V., Fu S., Tsimberidou A. M., Wheler J. J., Hong O. S., Naing A., Falchook G. S., Fanale M. A., Cabanillas M. E., Janku F. Phase 1 dose-escalation study of anti CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers. Mol. Cancer Ther. 2017; 17 (3): 671-676. DOI: 10.1158/1535-7163.MCT-17-0673. PMID: 29237802.
26. Simmons O., Lang E. The Most Recent 0nco-logic Emergency: What Emergency Physicians Need to Know About the Potential Complications of Immune Checkpoint Inhibitors. Cureus. 2017; 9 (10): e1774. O0I: 10.7759/cureus.1774. PMID: 29250474.
27. Румянцев А. Г., Тюляндин С. А. Эффективность ингибиторов контрольных точек иммунного ответа в лечении солидных опухолей. Практическая онкология. 2016; 17 (2): 74-89.
28. Ott P. A., Hodi F. S., Robert C. CTLA-4 and PO-1/PO-L1 blockade: new immunotherapeu-tic modalities with durable clinical benefit in melanoma patients. Clin. Cancer Res. 2013; 19 (19): 5300-5309. O0I: 10.1158/1078-0432. CCR-13-0143. PMID: 24089443.
29. Ross K., Jones R. J. Immune checkpoint inhibitors in renal cell carcinoma. Clin. Sci. (Lond). 2017; 131 (21): 2627-2642. DOI: 10.1042/ CS20160894. PMID: 29079639.
30. Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PO-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMB0 J. 1992; 11 (11): 3887-3895. PMID: 1396582.
31. Shinohara T., Taniwaki M., Ishida Y., Kawaichi M., Honjo T. Structure and chromosomal localization of the human PO-1 gene (PDCD 1). Genomics. 1994;23 (3): 704-706. DO: 10.1006/ geno.1994.1562. PMID: 7851902.
32. Zhu X., Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017; 8 (57): 97671-97682; DOI: 10.18632/oncotarget.18311. [Epub ahead of print]. O0I: 10.18632/oncotarget. 18311. PMIO: 29228642.
33. Nielsen C., Ohm-Laursen L., Barington T., Husby S., Lillevang S. T. Alternative splice variants of the human PO-1 gene. Cell Immunol. 2005; 235 (2): 109-116.
34. Bardhan K., Weaver J., Strauss L., Patsoukis N., Boussiotis V. Phosphorylation of Y248 in the ITSM of PO-1 is indicative of PO-1-mediated inhibitory function. J. Immunol. 2017; 198 (1 Suppl.): 154.9.
35. Latchman Y., Wood C. R., Chernova T., Chaudhary O., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., Greenfield E.A., Bourque K., Boussiotis V.A., Carter L. L., Carreno B. M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A. H., Freeman G. J. PD-L2 is a second ligand for PD-1 and inhibits T-Cell activation. Nat. Immunol. 2001; 2 (3): 261-268. DOI: 10.1038/85330. PMID: 11224527.
36. Oong H., Zhu G., Tamada K., Chen L. B 7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999; 5 (12): 1365-1369. DOI: 10.1038/70932. PMID: 10581077.
37. Yao S., Chen L PD-1 as an immune modulatory receptor. Cancer J. 2014; 20 (4): 262-264.
38. Chen Y., Wang Q., Shi B., Xu P., Hu Z., Bai L., Zhang X. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine. 2011; 56 (2): 231-238. e-mail: medalfavit@mail.ru Медицинский алфавит № 29 / 2018, том № 2. Диагностика и онкотерапия I
39. He X. H., Xu L H., Liu Y. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain. Acta Pharmacol. Sin. 2005; 26 (4): 462-468.
40. Chen J., Jiang C. C., Jin L., Zhang X. D. Regulation of PD-LJ: a novel role of pro-survival signalling in cancer. Ann. Oncol. 2016; 27 (3): 409-4J6.
41. Du J., Qin Y., Wu Y., Zhao W., Zhai W., Qi Y., Wang C., Gao Y. The design of high affinity human PD-1 mutants by using molecular dynamics simulations (MD). Cell. Commun. Signal. 2018; 16 (J): 25. DOI: 10.1186/s12964-018-0239-9.
42. Keir M. E., Butte M. J., Freeman G. J., Sharpe A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008; 26: 677-704.
43. Schildberg F. A., Klein S. R., Freeman G. J., Sharpe A. H. Coinhibitory pathways in the B 7-CD28 ligand-receptor family. Immunity. 20J6; 44: 955-972.
44. Kleffel S., Posch C., Barthel S. R., Mueller H., Schlapbach C., Guenova E., Elco C. P., Lee N., Juneja V. R., Zhan Q., Lian C. G., Thomi R., Hoetzenecker W., Cozzio A., Dummer R., Mihm M. C. Jr., Flaherty K. T., Frank M. H., Murphy G. F., Sharpe A. H., Kupper T. S., Schatton T. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015; 162 (6): 1242-1256.
45. Yu Y., Tsang J. C., Wang C., Clare S., Wang J., Chen X., Brandt C., Kane L., Campos L.S., Lu L., Belz G. T., McKenzie A.N., Teichmann S. A., Dougan G., Liu P. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature. 2016 Nov 3; 539 (7627): 102-106. doi: 10. 1038/nature20105.
46. Karakhanova S., Bedke T., Enk A. H., Mahnke K. IL-27 renders DC immunosuppressive by induction of B7-HJ. J. Leukocyte Biol. 2011 89 (6): 837-845.
47. Hirahara K., Ghoreschi K., Yang X. P., Takahashi H., Laurence A., Vahedi G., Sciumè G., Hall A., Dupont C. D., Francisco L. M., Chen Q., Tanaka M., Kanno Y., Sun H. W., Sharpe A. H., Hunter C. A., O'Shea J.J. Interleukin-27 priming of T-Cells controls IL-J7production in trans via induction of the ligand PD-LJ. Immunity. 2012 Jun 29; 36 (6): 1017-30. doi: 10.1016/j. immuni.2012.03.024.
48. Thibult M. L., Mamessier E., Gertner-Dardenne J., Pastor S., Just-Landi S., Xerri L., Chetaille B., Olive D. PD- J is a novel regulator of human B-cell activation. Int Immunol. 2013; 25 (2): 129-137.
49. Lin J., Weiss A. T-Cell receptor signaling. J. Cell. Sci. 2001; 114 (Pt2): 243-244.
50. Yokosuka T., Takamatsu M., Kobayashi-Imanishi W., Hashimoto-Tane A., Azuma M., Saito T. Programmed cell death J forms negative costimulatory microclusters that directly inhibit T-Cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 2012; 209 (6): 1201-1217.
51. Peled M., Tocheva A. S., Sandigursky S., Nayak S., Philips E. A., Nichols K. E., Strazza M., Azoulay-Alfaguter I., Askenazi M., Neel B. G., Pelzek A. J., Ueberheide B., Mor A. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor Proc Natl Acad Sci U S A. 20J8 Jan 16; 115 (3): E468-E477.
52. Horita S., Nomura Y., Sato Y., Shimamura T., Iwata S., Nomura N. High-resolution crystal structure of the therapeutic antibody pem-brolizumab bound to the human PD-1. Sci. Rep. 2016; 13; 6:35297. doi: 10.1038/srep35297.
53. Riella L. V., Paterson A. M., Sharpe A. H., Chandraker A. Role of the PD-1 pathway in the immune response. Am.J. Transplant. 2012; 12 (10): 2575-2587. DOI: 10.1111/j.1600-6143.2012.04224.x. PMID: 22900886.
54. Sharpe A. H., Pauken K E. The diverse functions of the PD 1 inhibitory pathway. Nat. Rev. Immunol. 2018; 18 (3): 153-167.
55. Barber D. L., Wherry E. J., Masopust D., Zhu B., Allison J. P., Sharpe A. H., Freeman G. J., Ahmed R. Restoring function in exhausted CD8 T-Cells during chronic viral infection. Nature. 2006; 439 (7077): 682-687.
56. Crawford A., Angelosanto J. M., Kao C., Do-ering T.A., Odorizzi P.M., Barnett B.E., Wherry E. J. Molecular and transcriptional basis of CD4 T-cell dysfunction during chronic infection Immunity. 2014 Feb 20; 40 (2): 289-302. doi: 10.1016/j.immuni.2014.01.005.
57. Keir M. E., Butte M. J., Freeman G. J., Sharpe A. H. PD- 1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008; 26: 677-704.
58. Schildberg F. A., Klein S. R., Freeman G. J., Sharpe A. H. Coinhibitory pathways in the B 7-CD28 ligand-receptor family. Immunity. 2016; 44 (5): 955-972. doi: 10.1016/j.immuni.2016.05.002.
59. Youngblood B., Oestreich K.J., Ha S.J., Duraiswamy J., Akondy R.S., West E.E., Wei Z., Lu P., Austin J. W., Riley J. L., Boss J. M., Ahmed R. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8 (+) T-cells. Immunity. 2011; 35 (3): 400-12. doi: 10.1016/j.immuni.2011.06.015.
60. Pauken K. E., Sammons M. A., Odorizzi P. M., Manne S., Godec J., Khan O., Drake A.M., Chen Z., Sen D. R., Kurachi M., Barnitz R. A., Bartman C., Bengsch B., Huang A. C., Schenkel J. M., Vahedi G., Haining W. N., Berger S. L, Wherry E. J. Epigenetic stability of exhausted T-Cells limits durability of reinvigoration by PD-1 blockade. Science. 2016; 354 (6316): 1160-1165.
61. Sen D. R., Kaminski J., Barnitz R.A., Kurachi M., Gerdemann U., Yates K. B., Tsao H. W., Godec J., LaFleur M.W., Brown F. D., Tonnerre P., Chung R. T., Tully D. C., Allen T. M., Frahm N., Lauer G. M., Wherry E.J., Yosef N., Haining W. N. The epigenetic landscape of T-Cell exhaustion.Science. 20J6; 354 (6316): 1165-1169.
62. Staron M. M., Gray S. M., Marshall H. D., Parish I. A., Chen J. H., Perry C. J., Cui G., Li M., Kaech S. M. The transcription factor FoxOJ sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8 (+) T-Cells during chronic infection. Immunity. 2014; 41 (5): 802-814. doi: 10. 1016/j.immuni.2014. 10.013.
63. Chang C. H., Curtis J. D., Maggi L. B. Jr., Faubert B., Villarino A. V., O'Sullivan D., Huang S. C., Van der Windt G. J., Blagih J., Qiu J., Weber J. D., Pearce E. J., Jones R. G., Pearce E. L. Posttranscriptional control of T-Cell effector function by aerobic glycolysis. Cell. 2013; 153 (6): 1239-51. doi: 10.1016/j. cell2013.05.016.
64. Bengsch B., Johnson A. L., Kurachi M., Odorizzi P. M., Pauken K. E., Attanasio J., Stelekati E., McLane L.M., Paley M. A., Delgoffe G. M., Wherry E.J. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD- 1 Are an Early Driver of CD8 (+) T-Cell Exhaustion. Immunity. 2016; 45 (2): 358-73. doi: 10.1016/j.immuni.2016.07.008
65. Scharping N. E., Menk A. V., Moreci R. S., Whetstone R. D., Dadey R. E., Watkins S. C., Ferris R. L., Delgoffe G. M. The Tumor Microenvironment Represses T-Cell Mitochondrial Biogenesis to Drive Intratumoral T-Cell Metabolic Insufficiency and Dysfunction. Immunity. 20J6; 45 (3): 70J-703. doi: J0. J0J6/j.immuni.20J6.08.009
66. Parry R. V., Chemnitz J. M., Frauwirth K. A., Lanfranco A. R., Braunstein I., Kobayashi S. V., Linsley P.S., Thompson C.B., Riley J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005; 25 (21): 9543-9553.
67. Patsoukis N., Bardhan K., Chatterjee P., Sari D., Liu B., Bell L. N., Karoly E. D., Freeman G. J., Petkova V., Seth P., Li L, Boussiotis V. A. PD- J alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 20J5; 6: 6692.
68. Simona S., Labarriere N. PD-1 expression on tumor-specific T-Cells: Friend or foe for immunotherapy? Oncoimmunology. 2018; 7 (1): e1364828. doi: 10.1080/2162402X.2017.1364828.
69. Rekik R., Belhadj Hmida N., Ben Hmid A., Zamali I., Kammoun N., Ben Ahmed M. PD-1 induction through TCR activation is partially regulated by endogenous TGF-β. Cell Mol. Immunol. 2015; 12 (5): 648-649. doi: 10.1038/ cmi.2014.J04.
70. Arasanz H., Gato-Cahas M., Zuazo M., Ibahez-Vea M., Breckpot K., Kochan G., Escors D. PD 1 signal transduction pathways in T-Cells. Onco-target. 20J7; 8 (3J): 51936-51945. 10.18632/ oncotarget.17232.
71. Garcia-Diaz A., Shin D. S., Moreno B. H., Saco J., Escuin-Ordinas H., Rodriguez G.A., Zaretsky J.M., Sun L., Hugo W., Wang X., Parisi G., Saus C. P., Torrejon D. Y., Graeber T. G., Comin-Anduix B., Hu-Lieskovan S., Damoiseaux R., Lo R. S., Ribas A. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017; 19 (6): 1189-1201. doi: 10.1016/j.celrep.2017.04.031
72. Mimura K., Teh J. L., Okayama H., Shiraishi K., Kua L.F., Koh V., Smoot D. T., Ashktorab H., Oike T., Suzuki Y., Fazreen Z., Asuncion B. R., Shabbir A., Yong W. P., So J., Soong R., Kono K. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018; 109 (1): 43-53. doi: 10.1111/cas.13424.
73. Okazaki T., Maeda A., Nishimura H., Kurosaki T., Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. U S A. 2001; 98 (24): 13866-13871.
74. Ключагина Ю.И., Соколова З. А., Барышникова М. А. Роль рецептора PD 1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017; 4 (1): 49-55. DOI: 10.15690/onco.v4i1. 1684.42.
75. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012; 12 (4): 252-264. DOI: 10.1038/ nrc3239. PMID: 22437870.
76. Patel S. P., Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 2015; J4 (4): 847-856. DOI: 10.1158/1535-7163.MCT-14-0983. PMID: 25695955.
77. Матвеев В. Б. Ниволумаб - новый стандарт в лечении метастатического рака почки. Онкоурология. 2017; 13 (3): 18-26.
78. Frigola X., Inman B. A., Krco C. J., Liu X., Harrington S. M., Bulur P.A., Dietz A.B., Dong H., Kwon E. D. Soluble B7-H1: differences in production between dendritic cells and T-Cells. Immunol Lett. 2012; 142 (1-2): 78-82. doi: 10.10J6/j.imlet.2011. 11.001.
79. Okuma Y., Hosomi Y., Nakahara Y., Watanabe K., Sagawa Y., Homma S. High plasma levels of soluble programmed cell death ligand J are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017; 104: 1-6.
80. Takeuchi M., Doi T., Obayashi K., Hirai A., Yoneda K., Tanaka F., Iwai Y. Soluble PD-L1 with PD-1-binding capacity exists in the plasma of patients with non-small cell lung cancer. Immunol. Lett. 2018; 196: 155-160. doi: 10.1016/j. imlet.2018.01.007.
81. Sorensen S. F., Demuth C., Weber B., Sorensen B. S., Meldgaard P. Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated nonsmall cell lung cancer treated with erlotinib. Lung Cancer. 2016; 100: 77-84.
82. Zhang J., Gao J., Li Y., Nie J., Dai L., Hu W., Chen X., Han J., Ma X., Tian G., Wu D., Shen L., Fang J. Circulating PD-L1 in NSCLC patients and the correlation between the level of PD-L1 expression and the clinical characteristics. Thorac. Cancer. 2015; 6 (4): 534-538. DOI: 10.1111/1759-7714. 12247.
83. Cheng H. Y., Kang P. J., Chuang Y. H., Wang Y. H., Jan M. C., Wu C. F., Lin C. L., Liu C. J., Liaw Y. F., Lin S. M., Chen P. J., Lee S. D., Yu M. W. Circulating programmed death- J as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS One. 2014; 9 (11): e95870. DOI: 10.1371/ journal.pone.0095870.
84. Li N., Zhou Z., Li F., Sang J., Han Q., Lv Y., Zhao W., Li C., Liu Z. Circulating soluble programmed death-1 levels may differentiate immune-tolerant phase from other phases and hepatocellular carcinoma from other clinical diseases in chronic hepatitis B virus infection. Oncotarget. 2017; 8 (28): 46020-46033. DOI: 10.18632/oncotarget.17546.
85. Kruger S., Legenstein M. L., Rösgen V., Haas M., Modest D. P., Westphalen C. B., Ormanns S., Kirchner T., Heinemann V., Holdenrieder S., Boeck S. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed deathligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology. 2017; 6 (5): e13J0358. DOI: 10.1080/2162402X.2017.1310358.
86. Zhang Y., Zhu W., Zhang X., Qu Q., Zhang L. Expression and clinical significance of programmed death-1 on lymphocytes and programmed death ligand-1 on monocytes in the peripheral blood of patients with cervical cancer. Oncol. Lett. 2017;14(6):7225-7231. doi: 10.3892/ol.2017.7105.
87. Theodoraki M. N., Yerneni S. S., Hoffmann T. K., Gooding W. E., Whiteside T. L. Clinical Significance of PD-L1 + Exosomes in Plasma of Head and Neck Cancer Patients. Clin. Cancer Res. 2018; 24 (4): 896-905. DOI: 10. 1158/1078-0432. CCR- 17-2664.
88. Zhang J., Gao J., Li Y., Nie J., Dai L, Hu W., Chen X., Han J., Ma X., Tian G., Wu D., Shen L, Fang J. Circulating PD-L1 in NSCLC patients and the correlation between the level of PD-L1 expression and the clinical characteristics. Thorac. Cancer. 20J5;6(4):534-538. doi: 10.1111/1759-7714.12247.
89. Cheng H. Y., Kang P. J., Chuang Y. H., Wang Y. H., Jan M. C., Wu C. F., Lin C. L., Liu C. J., Liaw Y. F., Lin S. M., Chen P. J., Lee S. D., Yu M. W. Circulating programmed death- 1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS One. 2014; 9 (11): e95870. DOI: 10.1371/ journal.pone.0095870.
90. Zhao J., Zhang P., Wang J., Xi Q., Zhao X., Ji M., Hu G. Plasma levels of soluble programmed death ligand-1 may be associated with overall survival in nonsmall cell lung cancer patients receiving thoracic radiotherapy. Medicine (Baltimore). 2017; 96 (7): e6102. DOI: 10.1097/M D.0000000000006102.
91. Zhang P., Ouyang S., Wang J., Huang Z., Wang J., Liao L. Levels of programmed death-1 and programmed death ligand- 1 in the peripheral blood of patients with oral squamous cell carcinoma and its clinical implications. Hua Xi Kou Qiang Yi Xue Za Zhi. 2015; 33 (5): 529-533
92. Nagato T., Ohkuri T., Ohara K., Hirata Y., Kishibe K., Komabayashi Y., Ueda S., Takahara M., Kumai T., Ishibashi K., Kosaka A., Aoki N., Oikawa K., Uno Y., Akiyama N., Sado M., Takei H., Celis E., Harabuchi Y., Kobayashi H. Programmed death-ligand J and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol. Immunother. 2017; 66 (7): 877-890.
93. Frigola X., Inman B. A., Lohse C. M., Krco C. J., Cheville J. C., Thompson R. H., Leibovich B., Blute M. L., Dong H., Kwon E. D. Identification of a soluble form of B 7-H1 that retains immu nosuppressive activity and is associated with aggressive renal cell carcinoma. Clin. Cancer Res. 2011; 17 (7): 1915-1923.
94. Rossille D., Gressier M., Damotte D., Maucort-Boulch D., Pangault C., Semana G., Le Gouill S., Haioun C., Tarte K., Lamy T., Milpied N., Fest T., Damaj G. and Groupe Ouest-Est des Leucémies et Autres Maladies du Sang, and Groupe Ouest-Est des Leucémies et Autres Maladies du Sang. High level of soluble programmed cell death ligand J in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: results from a French multicenter clinical trial. Leukemia. 2014; 28 (12): 2367-2375.
95. Huang S. Y., Lin H. H., Lin C. W., Li C. C., Yao M., Tang J. L., Hou H. A., Tsay W., Chou S. J., Cheng C. L., Tien H. F. Soluble PD-L1: A biomarker to predict progression of autologous transplantation in patients with multiple myeloma. Oncotarget. 2016; 7(38): 62490-62502. https: //doi.org/10.18632/ oncotarget.11519.
96. Zheng Z., Bu Z., Liu X., Zhang L., Li Z., Wu A., Wu X., Cheng X., Xing X., Du H., Wang X., Hu Y., Ji J. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin. J. Cancer. Res. 2014; 26 (1): 104-111.
97. Theodoraki M. N., Yerneni S. S., Hoffmann T. K., Gooding W. E., Whiteside T.L. Clinical Significance of PD-L1 + Exosomes in Plasma of Head and Neck Cancer Patients. Clin. Cancer Res. 2018; 24 (4): 896-905. DOI: 10.1158/1078-0432. CCR- 17-2664.
98. Zhou J., Mahoney K.M., Giobbie-Hurder A., Zhao F., Lee S., Liao X., Rodig S., Li J., Wu X., Butterfield L. H., Piesche M., Manos M. P., Eastman L.M., Dranoff G., Freeman G.J., Hodi F. S. Soluble PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol. Res. 2017; 5 (6): 480-492. doi: 10.1158/2326-6066.CIR-16-0329.
Review
For citations:
Naberezhnov D.S., Morozov A.A., Fridman M.F., Alferov A.A., Bazaev V.V., Kushlinsky N.E. Pd-1/pd-l1 pathway at immunotherapy of renal cell carcinoma. Part 1: functions of signal way pd-1/pd-l1 for immune system and immunotherapy. Part I. Medical alphabet. 2018;2(29):22-31. (In Russ.)