Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The effect of systemic isotretinoin on the state of the skin microbiome in patients with acne

https://doi.org/10.33667/2078-5631-2025-8-33-38

Abstract

The study of the skin microbiome has come a long way from the first microscopic observations to a comprehensive molecular analysis of microbial communities and their functions using cutting-edge research methods. It has been established that changes in the microbiome in acne are accompanied by a decrease in the diversity of Curibacterium acnes, as well as an increase in the virulence properties of the resident biota with the formation of predisposing factors for the colonization of the skin by pathogenic microorganisms. The studies have shown that the effectiveness of systemic isotretinoin in the treatment of patients with acne is accompanied by an increase in the diversity of C. acnes phylotypes in the follicular microbiome, normalization of the metabolic activity of bacteria and a decrease in their number on the skin surface in the affected areas.

About the Authors

L. S. Kruglova
Central State Medical Academy of the Administrative Department of the President of Russia
Russian Federation

Kruglova Larisa S., DM Sci (habil.), professor, head of Dept of Dermatovenereology and Cosmetology, rector

Moscow



K.  B. Olkhovskaya
Central State Medical Academy of the Administrative Department of the President of Russia
Russian Federation

Olkhovskaya Kira B., PhD Med, associate professor at Dept of Dermatovenereology and Cosmetology

Moscow



References

1. Kutschera U. Antonie van Leeuwenhoek (1632– 1723): Master of Fleas and Father of Microbiology. Microorganisms. 2023; 11(8): 1994. https://doi.org/10.3390/microorganisms11081994

2. Smith K.A. Louis pasteur, the father of immunology? Front Immunol. 2012; 3: 68. https://doi.org/10.3389/fimmu.2012.00068

3. Kong H.H., Andersson B., Clavel T., et al. Performing Skin Microbiome Research: A Method to the Madness. J Invest Dermatol. 2017; 137 (3): 561–568. https://doi.org/10.1016/j.jid.2016.10.033

4. Lederberg J. Infectious history. Science. 2000; 288(5464): 287–293. https://doi.org/10.1126/science.288.5464.287.

5. Nikolaeva M. Yu., Monakhov K. N., Sokolovsky E. V. Skin microbiome disturbances in atopic dermatitis and psoriasis. Bulletin of Dermatology and Venereology. 2021; 97 (6): 33–43. (In Russ.). https://doi.org/10.25208/vdv1282

6. Khushpulyan D.M., Nikulin S.V., Zakharyants A.A., et al. Microbiome and in vitro models of the intestine. Biotechnology. 2023; 39 (5): 82–96. (In Russ.). https://doi.org/10.56304/S0234275823050071

7. Ilyina E.N., Mayorova E.M., Manolov A.I., et al. Gut microbiome and metabolism of drug compounds. Biomedical Chemistry: Research and Methods. 2021; 4 (1): e00146. https://doi.org/10.18097/bmcrm00146

8. Schommer N.N., Gallo R. L. Structure and function of the human skin microbiome. Trends Microbiol. 2013; 21(12): 660–668. https://doi.org/10.1016/j.tim.2013.10.001.

9. Grice E.A., Kong H.H., Conlan S., et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009; 324 (5931): 1190–1192. https://doi.org/10.1126/science.1171700

10. Findley K., Oh J., Yang J., et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013; 498 (7454): 367–370. https://doi.org/10.1038/nature12171

11. Lacey N., Ní Raghallaigh S., Powell F. C. Demodex mites – commensals, parasites or mutualistic organisms? Dermatology. 2011; 222 (2): 128–130. https://doi.org/10.1159/000323009

12. Cogen A.L., Nizet V., Gallo R.L. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008; 158 (3): 442–455. https://doi.org/10.1111/j.1365–2133.2008.08437.x

13. Panda S., Guarner F., Manichanh C. Structure and functions of the gut microbiome. Endocr Metab Immune Disord Drug Targets. 2014; 14 (4): 290–299. https://doi.org/10.2174/1871530314666140714120744

14. Pimentel M., Mathur R., Chang C. Gas and the microbiome. Curr Gastroenterol Rep. 2013; 15 (12): 356. https://doi.org/10.1007/s11894–013–0356-y22

15. Giles K., Pluvinage B., Boraston A.B. Structure of a glycoside hydrolase family 50 enzyme from a subfamily that is enriched in human gut microbiome bacteroidetes. Proteins. 2017; 85 (1): 182–187. https://doi.org/10.1002/prot.25189

16. Gloux K., Leclerc M., Iliozer H., et al. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol. 2007; 73 (11): 3734–3737. https://doi.org/10.1128/AEM.02204–06

17. Sudo N. Microbiome, HPA axis and production of endocrine hormones in the gut. Adv Exp Med Biol. 2014; 817: 177–194. https://doi.org/10.1007/978 1 4939 0897 4_8

18. Wolf A., Moissl-Eichinger C., Perras A., et al. The salivary microbiome as an indicator of car cinogenesis in patients with oropharyngeal squamous cell carcinoma: A pilot study. Sci Rep. 2017; 7(1): 5867. https://doi.org/10.1038/s41598 017 06361 2.

19. Araviyskaya E.R., Sokolovsky E.V. Microbiome: a new era in the study of healthy and pathologically altered skin. Bulletin of Dermatology and Venereology. 2016; 92 (3): 102–109. https://doi.org/10.25208/0042 4609 2016 92 3 102 109 (In Russ.). https://doi.org/10.25208/0042 4609 2016 92 3 102 109

20. Orlova E.V., Zybareva A.S., Smirnova L.M., et al. Modern understanding of the structure of skin microbiota in various dermatoses. Russian Journal of Skin and Venereal Diseases. 2019; 22 (3–4): 97–103. (In Russ.).

21. Kim H., Lee K., Lee J.Y., et al. Distinct Cutibacterium acnes subspecies defendens strains classified by multi-omics dissection alleviate inflammatory skin lesions of a rosacea-like mouse model. Front Microbiomes. 2024; 3: 1362408. https://doi.org/10.3389/frmbi.2024.1362408

22. Boyanova L. Cutibacterium Acnes (Formerly Propionibacterium Acnes): Friend or Foe? Future Microbiol. 2023; 18 (4): 235–244. https://doi.org/10.2217/fmb 2022–0191

23. Dréno B., Dagnelie M.A., Khammari A., Corvec S. The Skin Microbiome: A New Actor in Inflammatory Acne. American Journal of Clinical Dermatology. 2020; 21 (S1): 18–24. https://doi.org/10.1007/s40257 020 00531 1

24. Christensen G. J., Scholz C. F., Enghild J., et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genom. 2016; 29 (17): 152. https://doi.org/10.1186/s12864 016 2489 5

25. Claudel J.P., Auffret N., Leccia M.T., et al. Staphylococcus epidermidis: a potential new player in the physiopathology of acne? Dermatology. 2019; 235 (4): 287–294. https://doi.org/10.1159/000499858

26. Nied´zwiedzka A., Micallef M.P., Biazzo M., Podrini C. The Role of the Skin Microbiome in Acne: Challenges and Future Therapeutic Opportunities. Int J Mol Sci. 2024; 25 (21): 11422. https://doi.org/10.3390/ijms252111422

27. Böni R., Nehrhoff B. Treatment of Gram-Negative Folliculitis in Patients with Acne. Am J. Clin Dermatol. 2003; 4 (4): 273–276. https://doi.org/10.2165/00128071 200304040 00005

28. Semba R.D. On the ‘discovery’ of vitamin A. Ann Nutr Metab. 2012; 61 (3): 192–198. https://doi.org/10.1159/000343124

29. Reynolds R.V., Yeung H., Cheng C.E., et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2024; 90 (5): 1006.e1–1006.e30. https://doi.org/10.1016/j.jaad.2023.12.017

30. Thiboutot D.M., Dréno B., Abanmi A., et al. Practical management of acne for clinicians: An international consensus from the Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2018; 78 (2 Suppl 1): S1–S23.e1. https://doi.org/10.1016/j.jaad.2017.09.078

31. Ryan-Kewley A.E., Williams D.R., Hepburn N., Dixon R.A. Non-antibiotic Isotretinoin Treatment Differentially Controls Propionibacterium acnes on Skin of Acne Patients. Front Microbiol. 2017; 8: 1381. https://doi.org/10.3389/fmicb.2017.01381

32. Kelhala H.L., Aho V. T.E., Fyhrquist N., et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne. Exp Dermatol. 2018; 27 (1): 30–36. https://doi.org/10.1111/exd.13397

33. McCoy W.H. 4th, Otchere E., Rosa B.A., et al. Skin ecology during sebaceous drought-how skin microbes respond to Isotretinoin. J Invest Dermatol. 2019; 139 (3): 732–735. https://doi.org/10.1016/j.jid.2018.09.023

34. Nolan Z. T., Banerjee K., Cong Z., et al. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome. Exp Dermatol. 2023; 32 (7): 955–964. https://doi.org/10.1111/exd.14798

35. Perlamutrov Yu.N., Olkhovskaya K.B. Clinical efficacy and safety profile of systemic isotretinoin in acne therapy. Clinical dermatology and venereology. 2020; 19 (5): 730–736. https://doi.org/10.17116/klinderma202019051730 (In Russ.). https://doi.org/10.17116/klinderma202019051730.


Review

For citations:


Kruglova L.S., Olkhovskaya K.B. The effect of systemic isotretinoin on the state of the skin microbiome in patients with acne. Medical alphabet. 2025;(8):33-38. (In Russ.) https://doi.org/10.33667/2078-5631-2025-8-33-38

Views: 37


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)