Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of surgical implantation protocol depending on the implant surface roughness and bone density, in vitro

https://doi.org/10.33667/2078-5631-2025-1-108-112

Abstract

The discovery of osseointegration by Professor Branemark in 1952 [1] revolutionized modern dental implantology. Osseointegration is a dynamic process influenced by numerous factors, with primary stability playing a crucial role. Primary stability refers to the immobility of an implant immediately after placement in the prepared bone bed. Insufficient macro- and microscopic factors can lead to complications and implant loss. This study compares different surgical protocols for implant bed preparation in dense (D2) and less dense (D3) bone using implants with low and aggressive macro-threads. The findings will inform clinical recommendations.

Objective. To evaluate the effectiveness of various implant bed preparation protocols using periotestmetry on experimental models, considering bone type and implant design, identifying key factors determining primary stability for improved clinical placement protocols.

Materials and methods. The study included 10 surgical protocols for dental implant placement. Implants were inserted into polyurethane blocks simulating bone types D2 and D3. Each group consisted of 25 blocks of the same type, with one implant per block. IRIS LIKO-M (low-aggressive thread) and IRIS Evolution (aggressive thread) implants (NPK Likostom LLC, Russia) were used. A Venton M3 physiodispenser (China) recorded insertion torque. Implant stability was measured using a Penguin PFA device (Sweden) in ISQ units. Statistical analysis was performed using StatTech v. 4.7.0 (Stattech LLC, Russia), comparing groups using Student’s t-test (p<0.05).

Conclusions. Statistical analysis demonstrated that primary stability is directly influenced by favorable bone conditions (D2: thick cortical plate surrounding dense cancellous bone; D3: thin cortical plate surrounding less dense cancellous bone) and the use of expanders for D4 bone (thin cortical plate surrounding low-density cancellous bone).

About the Authors

S. D. Hossain
Peoples’ Friendship University of Russia named after Patrice Lumumba; OOO «SK-KhOLDING»
Russian Federation

Shazmim D. Hossain, DDS, assistant lecturer at the department of Oral and Maxillofacial surgery

Moscow



D. G. Shirokova
Peoples’ Friendship University of Russia named after Patrice Lumumba; OOO «SK-KhOLDING»
Russian Federation

Darina G. Shirokova, resident of the Department of Maxillofacial Surgery and Surgical Dentistry

Moscow



K. R. Kobets
Peoples’ Friendship University of Russia named after Patrice Lumumba; OOO «SK-KhOLDING»
Russian Federation

Kobets Konstantin Konstantinovich, PhD, assistant lecturer of the Department of Maxillofacial Surgery and Surgical Dentistry

Moscow



R. F. Mukhametshin
Peoples’ Friendship University of Russia named after Patrice Lumumba; OOO «SK-KhOLDING»
Russian Federation

Mukhametshin Roman Flaridovich, PhD, assistant lecturer of the Department of Maxillofacial Surgery and Surgical Dentistry

Moscow



V. D. Trufanov
Peoples’ Friendship University of Russia named after Patrice Lumumba; OOO «SK-KhOLDING»
Russian Federation

Trufanov Vadim Dmitrievich, PhD., professor of the department of Oral and Maxillofacial surgery

Moscow



M. L. Akramov
Peoples’ Friendship University of Russia named after Patrice Lumumba; OOO «SK-KhOLDING»
Russian Federation

Akramov Maksim Leonidovich, prosthodontist, surgeon, therapist

Moscow



References

1. Kulikova A.A., Dymnikov A.B., Ivanov S.Yu., Muraev A.A., Tumanyan G.A. Scientific research by Branemark in the field of osseointegration and bone regeneration (review, part 1). – Clinical dentistry. – 2021;24(2):72–76.

2. Fanali S, Tumedei M, Pignatelli P, Inchingolo F, Pennacchietti P, Pace G, Piattelli A. Implant primary stability with an osteocondensation drilling protocol in different density polyurethane blocks. Comput Methods Biomech Biomed Engin. 2021 Jan;24(1):14–20. doi: 10.1080/10255842.2020.1806251. Epub 2020 Aug 25. PMID: 32840129. DOI: 10.1080/10255842.2020.1806251.

3. Dental implantology: study. allowance / Comp. F.Z. Mirsaeva, M.B. Ubaydullaev, A.B. Vyatkina, S.Sh. Fatkullina; Ed. prof. F.Z. Mirsaeva. – Ufa: Publishing house of the State Budgetary Educational Institution of Higher Professional Education BSMU of the Ministry of Health of Russia, 2015. – 124 p.

4. H H, G W, E H. The clinical significance of implant stability quotient (ISQ) measurements: A literature review. J Oral Biol Craniofac Res. 2020 Oct-Dec;10(4):629-638. doi: 10.1016/j.jobcr.2020.07.004. Epub 2020 Aug 14. PMID: 32983857; PMCID: PMC7494467. DOI: 10.1016/j.jobcr.2020.07.004.

5. Nedir R, Bischof M, Szmukler- Moncler S, Bernard JP, Samson J. Predicting osseointegration by means of implant primary stability. Clinical Oral Implants Research. 2004;15:520–528. DOI: 10.1111/j.1600-0501.2004.01059.x.

6. Monje A, Ravidà A, Wang HL, Helms JA, Brunski JB. Relationship Between Primary/ Mechanical and Secondary/Biological Implant Stability. Int J Oral Maxillofac Implants. 2019 Suppl;34:s7–s23. doi: 10.11607/jomi.19suppl.g1. PMID: 31116830. DOI: 10.11607/jomi.19suppl.g1.

7. Murzabekov A.I., Salekh K.M., Serebryanyy S.V., Dobrynin I.A., Savinov M.S., Tselikov D.I., Klimentov S.M., Sergeev Y.A., Avanisyan V.M. Сomparative study of the effect of the microrelief of the surface of dental implants on its primary stability in various types of bone tissue // Actual problems in dentistry. 2024. no. 2. pp. 127–134. DOI: https://doi.org/10.18481/2077-7566-2024-20-2-127-134.

8. Dottore AM, Kawakami PY, Bechara K. Stability of implants placed in augmented posterior mandible after alveolar osteotomy using resorbable nonceramic hydroxyapatite or intraoral autogenous bone: 12-month follow-up. Clinical Implant Dentistry and Related Research. 2014;16(3):330–336. DOI: 10.1111/cid.12010.

9. Kastala VH, Ramoji Rao MV. Comparative evaluation of implant stability in two different implant systems at baseline and 3–4 months intervals using RFA device (OSSTELL ISQ). Indian J Dent Res. 2019 Sep-Oct;30(5):678–686. doi: 10.4103/ijdr. IJDR_446_17. PMID: 31854356. DOI: 10.4103/ijdr.IJDR_446_17.

10. Frisardi G, Barone S, Razionale AV, Paoli A, Frisardi F, Tullio A, Lumbau A, Chessa G. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis. Head Face Med. 2012 May 29;8:18. doi: 10.1186/1746-160X-8-18. PMID: 22642768; PMCID: PMC3464165. DOI: 10.1186/1746-160X-8-18.

11. Darby I. Risk factors for periodontitis & peri-implantitis. Periodontol 2000. 2022 Oct;90(1):9–12. doi: 10.1111/prd.12447. Epub 2022 Aug 1. PMID: 35913624; PMCID: PMC9804916. DOI: 10.1111/prd.12447.

12. Gileva O.S., Chuprakov M.A., Libik T.V., Syutkina E.S., and Mirsaeva F.Z. “Dynamics of stability indicators of dental implants (ISQ) when using low-intensity laser radiation in a therapeutic and prophylactic mode” Russian Journal of Biomechanics, vol. 22, no. 4, 2018, pp. 513–526.

13. Oshurko A.P. et al. Resonance frequency analysis–indicator of post-implantation morphology of mandibular bone tissue // Modern medical technology. – 2023. – №. 4. – С. 70–75. DOI: 10.34287/MMT.4(59).2023.9.


Review

For citations:


Hossain S.D., Shirokova D.G., Kobets K.R., Mukhametshin R.F., Trufanov V.D., Akramov M.L. Features of surgical implantation protocol depending on the implant surface roughness and bone density, in vitro. Medical alphabet. 2025;(1):108-112. (In Russ.) https://doi.org/10.33667/2078-5631-2025-1-108-112

Views: 170


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)