

Pathogenetic and prognostic aspects of copper and zinc deficiency in severely burned patients
https://doi.org/10.33667/2078-5631-2024-35-73-78
Abstract
Objective. To study the copper and zinc content in the severely burned patients’ blood serum and evaluate their capabilities as prognostic criteria for the burn disease outcome.
Materials and methods. 37 patients with a burn area of 50,7±17,2 % of the body surface were examined, 7 of them died. The content of copper, zinc, albumin, globulins and prealbumin in blood serum was assessed within 14 days after receiving thermal injury.
Results. A copper and zinc deficiency was found during the burn shock. In the future, the copper levels normalization and a tendency to the zinc concentration increase with normalization by 14 days after burn injury are noted. The micronutrient deficiency correlation with the albumin, prealbumin and globulins levels was found. The conjugacy between hypocyncemia and hypocupremia with the sepsis presence and the death probability was revealed. A decrease in zinc levels below 4,7 mmol/l leads to a 24-fold increase in the death chances and in copper content below 13 mmol/l – to a 10–fold increase in the chances. The sensitivity and specificity of the zinc concentration threshold value assessment was 71 % and 90 %, respectively, and the copper concentration was 80 % and 75 % respectively.
Conclusion. During the burn shock hypocupremia and hypocyncemia are detected. Further normalization of the copper level and a tendency to zinc concentration normalization were revealed. Zinc and copper concentrations can serve as additional sepsis biomarkers. Threshold values of zinc and copper concentrations in blood serum have been determined which determine the fatal outcome risk of burn disease.
About the Authors
O. V. KostinaRussian Federation
Kostina Olga V., PhD Bio Sci, senior researcher at Dept of Scientific and Laboratory Research
Nizhny Novgorod
E. A. Galova
Russian Federation
Galova Elena A., PhD Med, deputy director for science
Nizhny Novgorod
M. V. Presnyakova
Russian Federation
Presnyakova Marina V., PhD Bio Sci., biologist of the laboratory of biochemistry and emergency diagnostics
Nizhny Novgorod
A. S. Pushkin
Russian Federation
Pushkin Artem S., anesthesiologist-reanimatologist at Dept of Anesthesiology and Resuscitation of the Burn Center
Nizhny Novgorod
References
1. Żwierełło W., Styburski D., Maruszewska A. et al. Bioelements in the treatment of burn injuries – The complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium and magnesium). J Trace Elem Med Biol. 2020; 62: 126616. DOI: 10.1016/j.jtemb.2020.126616
2. Kostina O. V., Presnyakova M. V., Albitskaya Z. V. Biological role lf copper in pathogenesis of autism in children: a literature review. Ekologiya cheloveka (Human Ecology). 2020; 27(4): 42–47. DOI: 10.33396/1728–0869–2020–4–42–47
3. Rebrov V. G., Gromova O. A. Vitaminy, makro- i mikroelementy [Vitamins, macro- and microelements]. Moscow: GEOTAR-Media Publ.; 2008. 960 p.
4. Ogen-Shtern N., Chumin K., Silberstein E. et al. Copper Ions Ameliorated Thermal Burn-Induced Damage in ex vivo Human Skin Organ Culture. Skin Pharmacol Physiol. 2021; 34(6): 317–327. DOI: 10.1159/000517194
5. Borkow G., Okon-Levy N., Gabbay J. Copper oxide impregnated wound dressing: biocidal and safety studies. Wounds. 2010; 22(12): 301–10. PMID: 25901580
6. Landriscina M., Bagalá C., Mandinova A. et al. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem. 2001; 276(27): 25549–57. DOI:10.1074/jbc.M102925200
7. Sen C. K., Khanna S., Venojarvi M. et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol. 2002; 282(5): H1821–7. DOI: 10.1152/ajpheart.01015.2001
8. Lebedeva S. A., Galenko-Yaroshevsky (Jr.) P.A., Rychka V. O. et al. Molecular aspects of the wound healing effect of zinc as an esential trace element. Trace elements in medicine. 2022; 23(1): 14–23. DOI: 10.19112/2413–6174–2022–23–1–14–23
9. Skrovanek S., DiGuilio K., Bailey R. et al. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol. 2014; 5(4): 496–513. DOI: 10.4291/wjgp.v5.i4.496
10. Koval’ M.G., Sorokina E. Yu., Pyhteeva E. D. Essential trace elements deficiency as a predictor of the burn disease course. Emergency medicine. 2020; 16 (3): 99.
11. Khorasani G., Hosseinimehr S. J., Kaghazi Z. The alteration of plasma’s zinc and copper levels in patients with burn injuries and the relationship to the time after burn injuries. Singapore Med J. 2008; 49(8): 627–30. PMID: 18756346
12. Voruganti V. S., Klein G. L., Lu H. X. et al. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns. 2005; 31(6): 711–6. DOI: 10.1016/j.burns.2005.04.026
13. Gutowska I., Żwierełło W., Piorun K. et al. The Extent of Burn Injury Significantly Affects Serum Micro- and Macroelement Concentrations in Patients on the First Day of Hospitalisation. Nutrients. 2022; 14(20): 4248. doi: 10.3390/nu14204248
14. Pantet O., Stoecklin P., Charrière M. et al. Trace element repletion following severe burn injury: A dose-finding cohort study. Clin Nutr. 2019; 38(1): 246–251. DOI: 10.1016/ j.clnu.2018.01.025
15. Wang X. X., Zhang M. J., Li X. B. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns]. Zhonghua Shao Shang Za Zhi. 2018; 34(1): 57–59. DOI: 10.3760/cma.j.issn.1009–2587.2018.01.012
16. Berger M. M., Reintam-Blaser A., Calder P. C. et al. Monitoring Nutrition in the ICU. Clin. Nutr. 2019; 38: 584–593. DOI: 10.1016/j.clnu.2018.07.009.
17. Jafari P., Thomas A., Haselbach D. et al. Trace element intakes should be revisited in burn nutrition protocols: A cohort study. Clin Nutr. 2018; 37(3): 958–964. DOI: 10.1016/j.clnu.2017.03.028
18. Berger M. M., Binnert C., Chiolero R. L. et al. Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism. Am. J. Clin. Nutr. 2007; 85: 1301–1306. DOI: 10.1093/ajcn/85.5.1301
19. Berger M. M., Cavadini C., Bart A. et al. Cutaneous copper and zinc losses in burns. Burns. 1992; 18(5): 373–80. DOI: 10.1016/0305–4179(92)90035-s
20. Skrovanek S., DiGuilio K., Bailey R. et al. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol. 2014; 5(4): 496–513. DOI: 10.4291/wjgp.v5.i4.496
21. He H., Wang Y., Yang Z. et al. Association between serum zinc and copper concentrations and copper/zinc ratio with the prevalence of knee chondrocalcinosis: a cross-sectional study. BMC Musculoskelet Disord. 2020; 21(1): 97. DOI: 10.1186/s12891–020–3121-z
22. Kostina O. V., Zagrekov V. I., Presnyakova M. V. et al. Relationship of zinc level with pathogenetically significant homeostasis disorders in severely burned patients. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2022; 67 (6): 330–333. DOI: 10.51620/0869–2084–2022–67–6–330–333
23. Vil’dyaeva M. V. The use of determination of the content of long-chain and short-chain free fatty acids in the evaluation of the effectiveness of treatment using pathogenetically based drugs. Vestnik Mordovskogo universiteta. 2013; 1–2: 41–45.
24. Shejbak V. M. Transport function of serum albumin: zinc and fatty acids. Vestnik VGMC. 2015; 14(2): 16–22.
25. Notova SV, Kazakova TV, Marshinskaya OV, Shoshina OV. Metal-ligand forms of iron and zinc in the human body. Kazan Medical Journal. 2022; 103(2): 259–268. DOI: 10.17816/KMJ2022–259
26. Maares M., Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients. 2020; 2(3): 762. DOI: 10.3390/nu12030762
27. Sozarukova M. M., Proskurnina E. V., Vladimirov Y. A. Serum albumin as a source of and a target for free radicals in pathology. Bulletin of RSMU. 2016; 1: 56–61. DOI: 10.24075/brsmu.2016–01–10
28. Ciccone L., Tonali N., Shepard W. et al. Physiological Metals Can Induce Conformational Changes in Transthyretin Structure: Neuroprotection or Misfolding Induction? Crystals. 2021; 11(4): 354. DOI: 10.3390/cryst11040354
29. Cheknev S. B. The proteins of γ-globulin fraction, that bind metal ions, in physiological immune regulation. Opposite effects of copper and zinc. Immunologiya. 2021; 42 (03): 293–300. DOI: https://doi.org/10.33029/0206–4952–2021–42–3–293–300
30. Gombart A. F., Pierre A., Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020; 12(1): 236. DOI: 10.3390/nu12010236
31. Hoeger J., Simon T. P., Beeker T. et al. Persistent low serum zinc is associated with recurrent sepsis in critically ill patients – A pilot study. PloS one. 2017; 12(5): e0176069. DOI: 10.1371/journal.pone.0176069
32. Alker W., Haase H. Zinc and Sepsis. Nutrients. 2018; 10(8): 976. DOI: 10.3390/nu10080976
33. Fraker P. J., King L. E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 2004; 4: 277–298. DOI: 10.1146/annurev.nutr.24.012003.132454
Review
For citations:
Kostina O.V., Galova E.A., Presnyakova M.V., Pushkin A.S. Pathogenetic and prognostic aspects of copper and zinc deficiency in severely burned patients. Medical alphabet. 2024;(35):73-78. (In Russ.) https://doi.org/10.33667/2078-5631-2024-35-73-78