Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Potential of echocardiographic assessment of early systolic lengthening in making diagnosis of various forms of coronary heart disease

https://doi.org/10.33667/2078-5631-2024-35-7-14

Abstract

The occurrence of paradoxical myocardial deformation, which includes early systolic lengthening and post-systolic shortening, was originally described in the 1970s in experimental animal models and in patients with myocardial ischemia at invasive assessment of the left ventricle (LV). Today, new echocardiographic imaging technology demonstrates that these phenomena are much more common than were initially thought. Quite a lot of studies have been conducred to investigate post-systolic shortening (PSS), but the role of early systolic lengthening (ESL) has become increasingly emphasized in the most recent research articles. In this regard, we have made an attempt to describe most completely and accessibly the clinical potential associated with the mechanisms of occurrence of ESL and the significance of its assessment in various forms of coronary heart disease.

About the Authors

L. G. Tyurina
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Tyurina Lyalya G., physician at Ultrasound Diagnostics Dept.

Moscow



L. T. Khamidova
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Khamidova Layla T., DM Sci (habil.), head of h Radiation Diagnostics Dept., ID RINTS – 968715

Moscow



N. V. Rybalko
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Rybalko Natalya V., DM Sci (habil.), leading researcher at Ultrasound and Functional Diagnostics Dept., ID RINTS – 507463

Moscow



G. A. Ghazaryan
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Ghazaryan Georgy A., DM Sci (habil.), professor, head of Dept of Emergency Cardiology with Methods of Non-invasive Functional Diagnostics

Moscow



References

1. Claus P., Omar A. M.S., Pedrizzetti G., Sengupta P. P., Nagel E. Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications. JACC: Cardiovasc. Imaging. 2015;8(12):1444–1460. https://doi.org/10.1016/j.jcmg.2015.11.001

2. Lang R. M., Addetia K., Narang A., Mor-Avi V. 3-Dimensional Echocardiography: Latest Developments and Future Directions. JACC: Cardiovasc. Imaging. 2018;11(12):1854–1878. https://doi.org/10.1016/j.jcmg.2018.06.024

3. Joyce E. LVEF: Long-standing monarch of systolic dysfunction, buckling under the strain? Eur. J. Heart Fail. 2014;16(12):1270–1272. https://doi.org/10.1002/ejhf.200

4. Badano L., Stoian J., Cervesato E., Bosimini E., Gentile F., Giannuzzi P., Heyman J., Lucci D., Maggioni A. P., Piazza R., Nicolosi G. L. Reproducibility of wall motion score and its correlation with left ventricular ejection fraction in patients with acute myocardial infarction. Am. J. Cardiol. 1996;78(7):855–858. https://doi.org/10.1016/s0002–9149 (96) 00440-7

5. Shah A. M., Solomon S. D. Myocardial deformation imaging: Current status and future directions. Circulation. 2012;125(2):244–248. https://doi.org/10.1161/CIRCULATIONAHA.111.086348

6. Asanuma T., Nakatani S. Myocardial ischaemia and post-systolic shortening. Heart. 2015;101(7):509–516. https://doi.org/10.1136/heartjnl-2013–305403

7. Brainin P., Hoffmann S., Fritz-Hansen T., Olsen F. J., Jensen J. S., Biering-Sørensen T. Usefulness of postsystolic shortening to diagnose coronary artery disease and predict future cardiovascular events in stable angina pectoris. J. Am. Soc. Echocardiogr. 2018;31(8):870–879.E 3. https://doi.org/10.1016/j.echo.2018.05.007

8. Alekhin M. N., Stepanova A. I. Echocardiography in the Assessment of Postsystolic Shortening of the Left Ventricle Myocardium of the Heart (in Russian). Kardiologiia. 2020;60(12):110–116. Алёхин М. Н., Степанова А. И. Эхокардиография в оценке постсистолического укорочения миокарда левого желудочка сердца. Кардиология. 2020;60(12):110–116. https://doi.org/10.18087/cardio.2020.12.n1087

9. Smedsrud M. K., Sarvari S., Haugaa K. H., Gjesdal O., Orn S., Aaberge L., Smiseth O. A., Edvardsen T. Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease. J. Am. Coll. Cardiol. 2012;60:1086–1093. https://doi.org/10.1016/j.jacc.2012.06.022

10. Negoita M., Zolgharni M., Dadkho E., Pernigo M., Mielewczik M., Cole G. D., Dhutia N. M., Francis D. P. Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software. Int. J. Cardiol. 2016;218:31–36. https://doi.org/10.1016/j.ijcard.2016.05.047

11. Ishigaki T., Asanuma T., Yagi N., Izumi H., Shimizu S., Fujisawa Y., Ikemoto T., Kushima R., Masuda K., Nakatani S. Incremental value of early systolic lengthening and postsystolic shortening in detecting left anterior descending artery stenosis using nonstress speckle-tracking echocardiography. Sci. Rep. 2021;11(1):19359. https://doi.org/10.1038/s41598-021-98900-1

12. Lang R. M., Badano L. P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F. A., Foster E., Goldstein S. A., Kuznetsova T., Lancellotti P., Muraru D., Picard M. H., Rietzschel E. R., Rudski L., Spencer K. T., Tsang W., Voigt J-U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28(1):1–39. e14. https://doi.org/10.1016/j.echo.2014.10.003

13. Lyseggen E., Skulstad H., Helle-Valle T., Vartdal T., Urheim S, Rabben S. I., Opdahl A., Ihlen H., Smiseth O. A. Myocardial strain analysis in acute coronary occlusion: a tool to assess myocardial viability and reperfusion. Circulation. 2005;112(25):3901–3910. https://doi.org/10.1161/CIRCULATIONAHA.105.533372

14. Vartdal T., Pettersen E., Helle-Valle T., Lyseggen E., Andersen K., Smith H. J., Aaberge L., Smiseth O. A., Edvardsen T. Identification of viable myocardium in acute anterior infarction using duration of systolic lengthening by tissue. Doppler strain: a preliminary study. J Am Soc Echocardiogr. 2012;25(7):718–725. https://doi.org/10.1016/j.echo.2012.04.016

15. Brainin P., Haahr-Pedersen S., Olsen F. J., Holm A. E., Fritz-Hansen T., Jespersen T., Gislason G., Biering-Sørensen T. Early Systolic Lengthening in Patients With ST-Segment–Elevation Myocardial Infarction: A Novel Predictor of Cardiovascular Events. J. Am. Heart Assoc. 2020;9(3): e013835. https://doi.org/10.1161/JAHA.119.013835

16. Cerqueira M. D., Weissman N. J., Dilsizian V., Jacobs A. K., Kaul S., Laskey W. K., Pennell D. J., Rumberger J. A., Ryan T., Verani M. S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–542. https://doi.org/10.1161/hc0402.102975

17. Wiegner A. W., Allen G. J., Bing O. H. Weak and strong myocardium in series: Implications for segmental dysfunction. Am. J. Physiol. 1978;235(6): H776–783. https://doi.org/10.1152/ajpheart.1978.235.6.H776

18. Shimizu G., Wiegner A. W., Gaasch W. H., Conrad C. H., Cicogna A. C., Bing O. H. L. Force patterns of hypoxic myocardium applied to oxygenated muscle preparations: Comparison with effects of regional ischemia on the contraction of non-ischemic myocardium. Cardiovasc. Res. 1996;32(6):1038–1046. https://doi.org/10.1016/s0008–6363 (96) 00162-9

19. Voigt J. U., Lindenmeier G., Exner B., Regenfus M., Werner D., Reulbach U., Nixdorff U., Flachskampf F. A., Daniel W. G. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J. Am. Soc. Echocardiogr. 2003;16(5):415–423. https://doi.org/10.1016/s0894–7317 (03) 00111-1

20. Brainin P., Biering-Sørensen S.R., Møgelvang R., Jensen J. S., Biering-Sørensen T. Duration of early systolic lengthening: Prognostic potential in the general population. Eur. Heart J. Cardiovasc. Imaging. 2020;21(11):1283–1290. https://doi.org/10.1093/ehjci/jez262

21. Brainin P., Biering-Sørensen S.R., Møgelvang R., de Knegt M. C., Olsen F. J., Galatius S., Gislason G. H., Jensen J. S., Biering-Sørensen T. Post-systolic shortening: Normal values and association with validated echocardiographic and invasive measures of cardiac function. Int. J. Cardiovasc. Imaging. 2019;35(2):327–337. https://doi.org/10.1007/s10554-018-1474-2

22. Urheim S., Edvardsen T., Steine K., Skulstad H., Lyseggen E., Rodevand O., Smiseth O. Postsystolic shortening of ischemic myocardium: A mechanism of abnormal intraventricular filling. Am. J. Physiol. Heart. Circ. Physiol. 2003;284(6): H2343–2350. https://doi.org/10.1152/ajpheart.00320.2002

23. Dalmas S., Wanigasekera V., Marsch S., Ryder W., Wong L., Foëx P. The influence of preload on post-systolic shortening in ischeamic myocardium. Eur. J. Anaesthesiol. 1995;12(2):127–133.

24. Grines C. L., Bashore T. M., Harisios B., Olson S., Shafer P., Wooley C. F. Functional Abnormalities in Isolated Left Bundle Branch Block: The Effect of Interventricular Asynchrony. Circulation. 1989;79(4):845–853. https://doi.org/10.1161/01.cir.79.4.845

25. Weidemann F., Broscheit J. A., Bijnens B., Claus P., Sutherland G. R., Voelker W., Ertl G., Strotmann J. M. How to distinguish between ischemic and nonischemic postsystolic thickening: A strain rate imaging study. Ultrasound. Med. Biol. 2006;32(1):53–59. https://doi.org/10.1016/j.ultrasmedbio.2005.09.003

26. Zahid W., Eek C. H., Remme E. W., Skulstad H., Fosse E., Edvardsen T. Early systolic lengthening may identify minimal myocardial damage in patients with non-ST elevation acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging. 2014;15(10):1152–1160. https://doi.org/10.1093/ehjci/jeu101

27. Kahyaoglu M., Gecmen C., Candan O., İzgi I. A., Kirma C. The duration of early systolic lengthening may predict ischemia from scar tissue in patients with chronic coronary total occlusion lesions. Int. J. Cardiovasc. Imaging. 2019;35(10):1823–1829. https://doi.org/10.1007/s10554-019-01624-7

28. Foex P., Leone B. J. Pressure-volume loops: a dynamic approach to the assessment of ventricular function. J. Cardiothorac. Vasc. Anesth. 1994;8(1):84–96. https://doi.org/10.1016/1053–0770 (94) 90020-5

29. Nakai H., Takeuchi M., Nishikage T., Lang R. M., Otsuji Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: Correlation with diabetic duration. Eur. J. Echocardiogr. 2009;10(8):926–932. https://doi.org/10.1093/ejechocard/jep097

30. Bijnens B., Claus P., Weidemann F., Strotmann J., Sutherland G. R. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation. 2007;116(21):2453–2464. https://doi.org/10.1161/CIRCULATIONAHA.106.684357

31. Tyberg J. V., Parmley W. W., Sonnenblick E. H. In-vitro studies of myocardial asynchrony and regional hypoxia. Circ. Res. 1969;25(5):569–579. https://doi.org/10.1161/01.res.25.5.569

32. Asanuma T., Uranishi A., Masuda K., Ishikura F., Beppu S., Nakatani S. Assessment of myocardial ischemic memory using persistence of post-systolic thickening after recovery from ischemia. JACC. Cardiovasc. Imaging. 2009;2(11):1253–1261. https://doi.org/10.1016/j.jcmg.2009.07.008

33. Sakurai D., Asanuma T., Masuda K., Hioki A., Nakatan, S. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging. 2014;30(4):739–748. https://doi.org/10.1007/s10554–014–0388-x

34. Hioki A., Asanuma T., Masuda K., Sakurai D., Nakatani S. Detection of abnormal myocardial deformation during acute myocardial ischemia using three-dimensional speckle tracking echocardiography. J. Echocardiogr. 2020;18(1):57–66. https://doi.org/10.1007/s12574-019-00449-6

35. Kozuma A., Asanuma T., Masuda K., Adachi H., Minami S., Nakatani S. Assessment of myocardial ischemic memory using three-dimensional speckle-tracking echocardiography: a novel integrated analysis of early systolic lengthening and postsystolic shortening. J. Am. Soc. Echocardiogr. 2019;32(11):1477–1486. https://doi.org/10.1016/j.echo.2019.06.013

36. Asanuma T., Fukuta Y., Masuda K., Hioki A., Iwasaki M., Nakatani S. Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC. Cardiovasc. Imaging. 2012;5(1):1–11. https://doi.org/10.1016/j.jcmg.2011.09.019

37. Pedersen F., Butrymovich V., Kelbæk H., Wachtell K., Helqvist S., Kastrup J., Holmvang L., Clemmensen P., Engstrøm T., Grande P., Saunamaki K., Jørgensen E. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 2014;64(20):2101–2108. https://doi.org/10.1016/j.jacc.2014.08.037

38. De Luca G., Ernst N., Zijlstra F., Van’t Hof A. W.J., Hoorntje J. C.A., Dambrink J. H.E., Gosslink A. T.M., De Boer M. J., Suryapranata H. Preprocedural TIMI flow and mortality in patients with acute myocardial infarction treated by primary angioplasty. J. Am. Coll. Cardiol. 2004;43(8):1363–1367. https://doi.org/10.1016/j.jacc.2003.11.042

39. Lyseggen E., Vartdal T., Remme E. W., Helle-Valle T., Pettersen E., Opdahl A., Edvardsen T., Smiseth O. A. A novel echocardiographic marker of end systole in the ischemic left ventricle: «tug of war» sign. Am. J. Physiol. Heart Circ. Physiol. 2009;296(3): H645–654. https://doi.org/10.1152/ajpheart.00313.2008

40. Thiele H., Kappl M. J., Linke A., Erbs S., Boudriot E., Lembcke A., Kivelitz D., Schuler G. Influence of time-to-treatment, TIMI-flow grades, and ST-segment resolution on infarct size and infarct transmurality as assessed by delayed enhancement magnetic resonance imaging. Eur. Heart J. 2007;28(12):1433–1439. https://doi.org/10.1093/eurheartj/ehm173

41. Perron A., Lim T., Pahlm-Webb U., Wagner G. S., Pahlm O. Maximal increase in sensitivity with minimal loss of specificity for diagnosis of acute coronary occlusion achieved by sequentially adding leads from the 24-lead electrocardiogram to the orderly sequenced 12-lead electrocardiogram. J. Electrocardiol. 2007;40(6):463–469. https://doi.org/10.1016/j.jelectrocard.2007.07.002

42. Phibbs B., Nelson W. Differential classification of acute myocardial infarction into ST- and non-ST segment elevation is not valid or rational. Ann. Noninvasive Electrocardiol. 2010;15(3):191–199. https://doi.org/10.1111/j.1542–474X.2010.00377.x

43. Sorajja P., Gersh B. J., Cox D. A., McLaughlin M.G., Zimetbaum P., Costantini C., Stuckey T., Tcheng J. E., Mehran R., Lansky A. J., Grines C. L., Stone G. W. Impact of delay to angioplasty in patients with acute coronary syndromes undergoing invasive management: analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage strategY) trial. J. Am. Coll. Cardiol. 2010;55(14):1416–1424. https://doi.org/10.1016/j.jacc.2009.11.063

44. DeWood M.A., Spores J., Notske R., Mouser L. T., Burroughs R., Golden M. S., Lang H. T. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 1980;303(16):897–902. https://doi.org/10.1056/NEJM198010163031601

45. Zhang W., Cai Q., Lin M., Tian R., Jin S., Qin Y., Lu X. Diagnostic potential of myocardial early systolic lengthening for patients with suspected non-ST-segment elevation acute coronary syndrome. BMC. Cardiovasc. Disord. 2023;23(1):364. https://doi.org/10.1186/s12872–023–03364-y

46. Minamisawa M., Koyama J., Kozuka A., Miura T., Saigusa T., Ebisawa S., Motoki H., Okada A., Ikeda U., Kuwahara K. Duration of myocardial early systolic lengthening for diagnosis of coronary artery disease. Open Heart. 2018;5(2): e000896. https://doi.org/10.1136/openhrt-2018–000896

47. Unkun T., Geçmen Ç., Çap M., İzci S., Erdoğan E., Önal Ç., Acar R. D., Bakal R. B., Kaymaz C., Özdemir N. Early Systolic Lengthening Is Associated with SYNTAX Score in Patients with Non-ST-Elevation Acute Coronary Syndrome. Anatol. J. Cardiol. 2023;28(2):94–101. https://doi.org/10.14744/AnatolJCardiol.2023.3064

48. Brainin P., Lindberg S., Olsen F. J., Pedersen S., Iversen A., Galatius S., Fritz-Hansen T., Gislason G., Søgaard P., Møgelvang R., Biering-Sørensen T. Early systolic lengthening by speckle tracking echocardiography predicts outcome after coronary artery bypass surgery. Int. J. Cardiol. Heart Vasc. 2021;28:34:100799. https://doi.org/10.1016/j.ijcha.2021.100799

49. Brainin P., Biering-Sørensen T., Jensen M. T., Møgelvang R., Fritz-Hansen T., Vilsbøll T., Rossing P., Jørgensen P. G. Prognostic Value of Early Systolic Lengthening by Strain Imaging in Type 2 Diabetes. J. Am. Soc. Echocardiogr. 2021;34(2):127–135. https://doi.org/10.1016/j.echo.2020.09.008

50. Kannel W. B., McGee D. L. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979;59(1):8–13. https://doi.org/10.1161/01.cir.59.1.8

51. Brainin P., Holm A. E., Sengeløv M., Jørgensen P. G., Bruun N. E., Schou M., Pedersen S., Fritz-Hansen T., Biering-Sørensen T. The prognostic value of myocardial deformational patterns on all-cause mortality is modified by ischemic cardiomyopathy in patients with heart failure. Int. J. Cardiovasc. Imaging. 2021;37(11):3137–3144. https://doi.org/10.1007/s10554-021-02291-3


Review

For citations:


Tyurina L.G., Khamidova L.T., Rybalko N.V., Ghazaryan G.A. Potential of echocardiographic assessment of early systolic lengthening in making diagnosis of various forms of coronary heart disease. Medical alphabet. 2024;(35):7-14. (In Russ.) https://doi.org/10.33667/2078-5631-2024-35-7-14

Views: 107


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)