

Potential of echocardiographic assessment of early systolic lengthening in making diagnosis of various forms of coronary heart disease
https://doi.org/10.33667/2078-5631-2024-35-7-14
Abstract
The occurrence of paradoxical myocardial deformation, which includes early systolic lengthening and post-systolic shortening, was originally described in the 1970s in experimental animal models and in patients with myocardial ischemia at invasive assessment of the left ventricle (LV). Today, new echocardiographic imaging technology demonstrates that these phenomena are much more common than were initially thought. Quite a lot of studies have been conducred to investigate post-systolic shortening (PSS), but the role of early systolic lengthening (ESL) has become increasingly emphasized in the most recent research articles. In this regard, we have made an attempt to describe most completely and accessibly the clinical potential associated with the mechanisms of occurrence of ESL and the significance of its assessment in various forms of coronary heart disease.
Keywords
About the Authors
L. G. TyurinaRussian Federation
Tyurina Lyalya G., physician at Ultrasound Diagnostics Dept.
Moscow
L. T. Khamidova
Russian Federation
Khamidova Layla T., DM Sci (habil.), head of h Radiation Diagnostics Dept., ID RINTS – 968715
Moscow
N. V. Rybalko
Russian Federation
Rybalko Natalya V., DM Sci (habil.), leading researcher at Ultrasound and Functional Diagnostics Dept., ID RINTS – 507463
Moscow
G. A. Ghazaryan
Russian Federation
Ghazaryan Georgy A., DM Sci (habil.), professor, head of Dept of Emergency Cardiology with Methods of Non-invasive Functional Diagnostics
Moscow
References
1. Claus P., Omar A. M.S., Pedrizzetti G., Sengupta P. P., Nagel E. Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications. JACC: Cardiovasc. Imaging. 2015;8(12):1444–1460. https://doi.org/10.1016/j.jcmg.2015.11.001
2. Lang R. M., Addetia K., Narang A., Mor-Avi V. 3-Dimensional Echocardiography: Latest Developments and Future Directions. JACC: Cardiovasc. Imaging. 2018;11(12):1854–1878. https://doi.org/10.1016/j.jcmg.2018.06.024
3. Joyce E. LVEF: Long-standing monarch of systolic dysfunction, buckling under the strain? Eur. J. Heart Fail. 2014;16(12):1270–1272. https://doi.org/10.1002/ejhf.200
4. Badano L., Stoian J., Cervesato E., Bosimini E., Gentile F., Giannuzzi P., Heyman J., Lucci D., Maggioni A. P., Piazza R., Nicolosi G. L. Reproducibility of wall motion score and its correlation with left ventricular ejection fraction in patients with acute myocardial infarction. Am. J. Cardiol. 1996;78(7):855–858. https://doi.org/10.1016/s0002–9149 (96) 00440-7
5. Shah A. M., Solomon S. D. Myocardial deformation imaging: Current status and future directions. Circulation. 2012;125(2):244–248. https://doi.org/10.1161/CIRCULATIONAHA.111.086348
6. Asanuma T., Nakatani S. Myocardial ischaemia and post-systolic shortening. Heart. 2015;101(7):509–516. https://doi.org/10.1136/heartjnl-2013–305403
7. Brainin P., Hoffmann S., Fritz-Hansen T., Olsen F. J., Jensen J. S., Biering-Sørensen T. Usefulness of postsystolic shortening to diagnose coronary artery disease and predict future cardiovascular events in stable angina pectoris. J. Am. Soc. Echocardiogr. 2018;31(8):870–879.E 3. https://doi.org/10.1016/j.echo.2018.05.007
8. Alekhin M. N., Stepanova A. I. Echocardiography in the Assessment of Postsystolic Shortening of the Left Ventricle Myocardium of the Heart (in Russian). Kardiologiia. 2020;60(12):110–116. Алёхин М. Н., Степанова А. И. Эхокардиография в оценке постсистолического укорочения миокарда левого желудочка сердца. Кардиология. 2020;60(12):110–116. https://doi.org/10.18087/cardio.2020.12.n1087
9. Smedsrud M. K., Sarvari S., Haugaa K. H., Gjesdal O., Orn S., Aaberge L., Smiseth O. A., Edvardsen T. Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease. J. Am. Coll. Cardiol. 2012;60:1086–1093. https://doi.org/10.1016/j.jacc.2012.06.022
10. Negoita M., Zolgharni M., Dadkho E., Pernigo M., Mielewczik M., Cole G. D., Dhutia N. M., Francis D. P. Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software. Int. J. Cardiol. 2016;218:31–36. https://doi.org/10.1016/j.ijcard.2016.05.047
11. Ishigaki T., Asanuma T., Yagi N., Izumi H., Shimizu S., Fujisawa Y., Ikemoto T., Kushima R., Masuda K., Nakatani S. Incremental value of early systolic lengthening and postsystolic shortening in detecting left anterior descending artery stenosis using nonstress speckle-tracking echocardiography. Sci. Rep. 2021;11(1):19359. https://doi.org/10.1038/s41598-021-98900-1
12. Lang R. M., Badano L. P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F. A., Foster E., Goldstein S. A., Kuznetsova T., Lancellotti P., Muraru D., Picard M. H., Rietzschel E. R., Rudski L., Spencer K. T., Tsang W., Voigt J-U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28(1):1–39. e14. https://doi.org/10.1016/j.echo.2014.10.003
13. Lyseggen E., Skulstad H., Helle-Valle T., Vartdal T., Urheim S, Rabben S. I., Opdahl A., Ihlen H., Smiseth O. A. Myocardial strain analysis in acute coronary occlusion: a tool to assess myocardial viability and reperfusion. Circulation. 2005;112(25):3901–3910. https://doi.org/10.1161/CIRCULATIONAHA.105.533372
14. Vartdal T., Pettersen E., Helle-Valle T., Lyseggen E., Andersen K., Smith H. J., Aaberge L., Smiseth O. A., Edvardsen T. Identification of viable myocardium in acute anterior infarction using duration of systolic lengthening by tissue. Doppler strain: a preliminary study. J Am Soc Echocardiogr. 2012;25(7):718–725. https://doi.org/10.1016/j.echo.2012.04.016
15. Brainin P., Haahr-Pedersen S., Olsen F. J., Holm A. E., Fritz-Hansen T., Jespersen T., Gislason G., Biering-Sørensen T. Early Systolic Lengthening in Patients With ST-Segment–Elevation Myocardial Infarction: A Novel Predictor of Cardiovascular Events. J. Am. Heart Assoc. 2020;9(3): e013835. https://doi.org/10.1161/JAHA.119.013835
16. Cerqueira M. D., Weissman N. J., Dilsizian V., Jacobs A. K., Kaul S., Laskey W. K., Pennell D. J., Rumberger J. A., Ryan T., Verani M. S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–542. https://doi.org/10.1161/hc0402.102975
17. Wiegner A. W., Allen G. J., Bing O. H. Weak and strong myocardium in series: Implications for segmental dysfunction. Am. J. Physiol. 1978;235(6): H776–783. https://doi.org/10.1152/ajpheart.1978.235.6.H776
18. Shimizu G., Wiegner A. W., Gaasch W. H., Conrad C. H., Cicogna A. C., Bing O. H. L. Force patterns of hypoxic myocardium applied to oxygenated muscle preparations: Comparison with effects of regional ischemia on the contraction of non-ischemic myocardium. Cardiovasc. Res. 1996;32(6):1038–1046. https://doi.org/10.1016/s0008–6363 (96) 00162-9
19. Voigt J. U., Lindenmeier G., Exner B., Regenfus M., Werner D., Reulbach U., Nixdorff U., Flachskampf F. A., Daniel W. G. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J. Am. Soc. Echocardiogr. 2003;16(5):415–423. https://doi.org/10.1016/s0894–7317 (03) 00111-1
20. Brainin P., Biering-Sørensen S.R., Møgelvang R., Jensen J. S., Biering-Sørensen T. Duration of early systolic lengthening: Prognostic potential in the general population. Eur. Heart J. Cardiovasc. Imaging. 2020;21(11):1283–1290. https://doi.org/10.1093/ehjci/jez262
21. Brainin P., Biering-Sørensen S.R., Møgelvang R., de Knegt M. C., Olsen F. J., Galatius S., Gislason G. H., Jensen J. S., Biering-Sørensen T. Post-systolic shortening: Normal values and association with validated echocardiographic and invasive measures of cardiac function. Int. J. Cardiovasc. Imaging. 2019;35(2):327–337. https://doi.org/10.1007/s10554-018-1474-2
22. Urheim S., Edvardsen T., Steine K., Skulstad H., Lyseggen E., Rodevand O., Smiseth O. Postsystolic shortening of ischemic myocardium: A mechanism of abnormal intraventricular filling. Am. J. Physiol. Heart. Circ. Physiol. 2003;284(6): H2343–2350. https://doi.org/10.1152/ajpheart.00320.2002
23. Dalmas S., Wanigasekera V., Marsch S., Ryder W., Wong L., Foëx P. The influence of preload on post-systolic shortening in ischeamic myocardium. Eur. J. Anaesthesiol. 1995;12(2):127–133.
24. Grines C. L., Bashore T. M., Harisios B., Olson S., Shafer P., Wooley C. F. Functional Abnormalities in Isolated Left Bundle Branch Block: The Effect of Interventricular Asynchrony. Circulation. 1989;79(4):845–853. https://doi.org/10.1161/01.cir.79.4.845
25. Weidemann F., Broscheit J. A., Bijnens B., Claus P., Sutherland G. R., Voelker W., Ertl G., Strotmann J. M. How to distinguish between ischemic and nonischemic postsystolic thickening: A strain rate imaging study. Ultrasound. Med. Biol. 2006;32(1):53–59. https://doi.org/10.1016/j.ultrasmedbio.2005.09.003
26. Zahid W., Eek C. H., Remme E. W., Skulstad H., Fosse E., Edvardsen T. Early systolic lengthening may identify minimal myocardial damage in patients with non-ST elevation acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging. 2014;15(10):1152–1160. https://doi.org/10.1093/ehjci/jeu101
27. Kahyaoglu M., Gecmen C., Candan O., İzgi I. A., Kirma C. The duration of early systolic lengthening may predict ischemia from scar tissue in patients with chronic coronary total occlusion lesions. Int. J. Cardiovasc. Imaging. 2019;35(10):1823–1829. https://doi.org/10.1007/s10554-019-01624-7
28. Foex P., Leone B. J. Pressure-volume loops: a dynamic approach to the assessment of ventricular function. J. Cardiothorac. Vasc. Anesth. 1994;8(1):84–96. https://doi.org/10.1016/1053–0770 (94) 90020-5
29. Nakai H., Takeuchi M., Nishikage T., Lang R. M., Otsuji Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: Correlation with diabetic duration. Eur. J. Echocardiogr. 2009;10(8):926–932. https://doi.org/10.1093/ejechocard/jep097
30. Bijnens B., Claus P., Weidemann F., Strotmann J., Sutherland G. R. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation. 2007;116(21):2453–2464. https://doi.org/10.1161/CIRCULATIONAHA.106.684357
31. Tyberg J. V., Parmley W. W., Sonnenblick E. H. In-vitro studies of myocardial asynchrony and regional hypoxia. Circ. Res. 1969;25(5):569–579. https://doi.org/10.1161/01.res.25.5.569
32. Asanuma T., Uranishi A., Masuda K., Ishikura F., Beppu S., Nakatani S. Assessment of myocardial ischemic memory using persistence of post-systolic thickening after recovery from ischemia. JACC. Cardiovasc. Imaging. 2009;2(11):1253–1261. https://doi.org/10.1016/j.jcmg.2009.07.008
33. Sakurai D., Asanuma T., Masuda K., Hioki A., Nakatan, S. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging. 2014;30(4):739–748. https://doi.org/10.1007/s10554–014–0388-x
34. Hioki A., Asanuma T., Masuda K., Sakurai D., Nakatani S. Detection of abnormal myocardial deformation during acute myocardial ischemia using three-dimensional speckle tracking echocardiography. J. Echocardiogr. 2020;18(1):57–66. https://doi.org/10.1007/s12574-019-00449-6
35. Kozuma A., Asanuma T., Masuda K., Adachi H., Minami S., Nakatani S. Assessment of myocardial ischemic memory using three-dimensional speckle-tracking echocardiography: a novel integrated analysis of early systolic lengthening and postsystolic shortening. J. Am. Soc. Echocardiogr. 2019;32(11):1477–1486. https://doi.org/10.1016/j.echo.2019.06.013
36. Asanuma T., Fukuta Y., Masuda K., Hioki A., Iwasaki M., Nakatani S. Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC. Cardiovasc. Imaging. 2012;5(1):1–11. https://doi.org/10.1016/j.jcmg.2011.09.019
37. Pedersen F., Butrymovich V., Kelbæk H., Wachtell K., Helqvist S., Kastrup J., Holmvang L., Clemmensen P., Engstrøm T., Grande P., Saunamaki K., Jørgensen E. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 2014;64(20):2101–2108. https://doi.org/10.1016/j.jacc.2014.08.037
38. De Luca G., Ernst N., Zijlstra F., Van’t Hof A. W.J., Hoorntje J. C.A., Dambrink J. H.E., Gosslink A. T.M., De Boer M. J., Suryapranata H. Preprocedural TIMI flow and mortality in patients with acute myocardial infarction treated by primary angioplasty. J. Am. Coll. Cardiol. 2004;43(8):1363–1367. https://doi.org/10.1016/j.jacc.2003.11.042
39. Lyseggen E., Vartdal T., Remme E. W., Helle-Valle T., Pettersen E., Opdahl A., Edvardsen T., Smiseth O. A. A novel echocardiographic marker of end systole in the ischemic left ventricle: «tug of war» sign. Am. J. Physiol. Heart Circ. Physiol. 2009;296(3): H645–654. https://doi.org/10.1152/ajpheart.00313.2008
40. Thiele H., Kappl M. J., Linke A., Erbs S., Boudriot E., Lembcke A., Kivelitz D., Schuler G. Influence of time-to-treatment, TIMI-flow grades, and ST-segment resolution on infarct size and infarct transmurality as assessed by delayed enhancement magnetic resonance imaging. Eur. Heart J. 2007;28(12):1433–1439. https://doi.org/10.1093/eurheartj/ehm173
41. Perron A., Lim T., Pahlm-Webb U., Wagner G. S., Pahlm O. Maximal increase in sensitivity with minimal loss of specificity for diagnosis of acute coronary occlusion achieved by sequentially adding leads from the 24-lead electrocardiogram to the orderly sequenced 12-lead electrocardiogram. J. Electrocardiol. 2007;40(6):463–469. https://doi.org/10.1016/j.jelectrocard.2007.07.002
42. Phibbs B., Nelson W. Differential classification of acute myocardial infarction into ST- and non-ST segment elevation is not valid or rational. Ann. Noninvasive Electrocardiol. 2010;15(3):191–199. https://doi.org/10.1111/j.1542–474X.2010.00377.x
43. Sorajja P., Gersh B. J., Cox D. A., McLaughlin M.G., Zimetbaum P., Costantini C., Stuckey T., Tcheng J. E., Mehran R., Lansky A. J., Grines C. L., Stone G. W. Impact of delay to angioplasty in patients with acute coronary syndromes undergoing invasive management: analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage strategY) trial. J. Am. Coll. Cardiol. 2010;55(14):1416–1424. https://doi.org/10.1016/j.jacc.2009.11.063
44. DeWood M.A., Spores J., Notske R., Mouser L. T., Burroughs R., Golden M. S., Lang H. T. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 1980;303(16):897–902. https://doi.org/10.1056/NEJM198010163031601
45. Zhang W., Cai Q., Lin M., Tian R., Jin S., Qin Y., Lu X. Diagnostic potential of myocardial early systolic lengthening for patients with suspected non-ST-segment elevation acute coronary syndrome. BMC. Cardiovasc. Disord. 2023;23(1):364. https://doi.org/10.1186/s12872–023–03364-y
46. Minamisawa M., Koyama J., Kozuka A., Miura T., Saigusa T., Ebisawa S., Motoki H., Okada A., Ikeda U., Kuwahara K. Duration of myocardial early systolic lengthening for diagnosis of coronary artery disease. Open Heart. 2018;5(2): e000896. https://doi.org/10.1136/openhrt-2018–000896
47. Unkun T., Geçmen Ç., Çap M., İzci S., Erdoğan E., Önal Ç., Acar R. D., Bakal R. B., Kaymaz C., Özdemir N. Early Systolic Lengthening Is Associated with SYNTAX Score in Patients with Non-ST-Elevation Acute Coronary Syndrome. Anatol. J. Cardiol. 2023;28(2):94–101. https://doi.org/10.14744/AnatolJCardiol.2023.3064
48. Brainin P., Lindberg S., Olsen F. J., Pedersen S., Iversen A., Galatius S., Fritz-Hansen T., Gislason G., Søgaard P., Møgelvang R., Biering-Sørensen T. Early systolic lengthening by speckle tracking echocardiography predicts outcome after coronary artery bypass surgery. Int. J. Cardiol. Heart Vasc. 2021;28:34:100799. https://doi.org/10.1016/j.ijcha.2021.100799
49. Brainin P., Biering-Sørensen T., Jensen M. T., Møgelvang R., Fritz-Hansen T., Vilsbøll T., Rossing P., Jørgensen P. G. Prognostic Value of Early Systolic Lengthening by Strain Imaging in Type 2 Diabetes. J. Am. Soc. Echocardiogr. 2021;34(2):127–135. https://doi.org/10.1016/j.echo.2020.09.008
50. Kannel W. B., McGee D. L. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979;59(1):8–13. https://doi.org/10.1161/01.cir.59.1.8
51. Brainin P., Holm A. E., Sengeløv M., Jørgensen P. G., Bruun N. E., Schou M., Pedersen S., Fritz-Hansen T., Biering-Sørensen T. The prognostic value of myocardial deformational patterns on all-cause mortality is modified by ischemic cardiomyopathy in patients with heart failure. Int. J. Cardiovasc. Imaging. 2021;37(11):3137–3144. https://doi.org/10.1007/s10554-021-02291-3
Review
For citations:
Tyurina L.G., Khamidova L.T., Rybalko N.V., Ghazaryan G.A. Potential of echocardiographic assessment of early systolic lengthening in making diagnosis of various forms of coronary heart disease. Medical alphabet. 2024;(35):7-14. (In Russ.) https://doi.org/10.33667/2078-5631-2024-35-7-14