

Современное понимание взаимосвязи кишечной микробиоты и развития аллергических заболеваний у детей
https://doi.org/10.33667/2078-5631-2024-16-48-52
Аннотация
Микробиота кишечника – один из ключевых элементов формирования иммунного ответа. На ее развитие и состав может повлиять множество факторов, включая течение родов, рацион ребенка и проведение антибиотикотерапии. Согласно гигиенической теории, развитие дисбактериоза в раннем возрасте может привести к повышению риска сенсибилизации и аллергических заболеваний. Более того, снижение количества определенных микроорганизмов может привести к нарушению барьерной функции кишечника и дифференцировки наивных Т-клеток.
Целью данного обзора является изучение взаимосвязи уровня различных микроорганизмов, входящих в состав кишечной микробиоты, и риска развития различных аллергических состояний у детей. Обзор опубликованной по данной теме литературы проводился по базам данных Pubmed и ResearchGate.Особое внимание привлекает уровень микроорганизмов в составе микробиоты кишечника, продуцирующих масляную кислоту, таких как Ruminococcus, Lachnospira и Roseburia. Данное соединение играет роль в обеспечении способности иммунной системы подавлять чрезмерные иммунные реакции. Снижение уровней микроорганизмов, продуцирующих масляную кислоту, отмечалось в 4 из 6 исследований, изучавших ее уровень у больных аллергическими заболеваниями. Обеспечение высокого уровня микробиоты, продуцирующей необходимые для поддержания кишечного барьера и формирования иммунного ответа химические соединения, является ключом к новому подходу в профилактике и лечении аллергических заболеваний.
Об авторах
С. Г. МакароваРоссия
Макарова Светлана Геннадиевна, д. м. н., зам. директора
Москва
А. П. Фисенко
Россия
Фисенко Андрей Петрович, д. м. н., директор
Москва
И. Г. Гордеева
Россия
Гордеева Ирина Григорьевна, м. н. с. лаборатории клинической иммунологии и нутрициологии, врач-педиатр
Москва
Е. Е. Емельяшенков
Россия
Емельяшенков Евгений Евгеньевич, к. м. н., научный сотрудник лаборатории клинической иммунологии и нутрициологии
Москва
Список литературы
1. Rackaityte E., Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front. Immunol. 2020; 11: 588. DOI: 10.3389/fimmu.2020.00588
2. Tordesillas L, Berin MC. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018; 55 (2): 107–117. DOI: 10.1007/s12016 018–8680–5
3. Verduci, E., Zuccotti, G.V., Peroni, D. G. New Insights in Cow’s Milk and Allergy: Is the Gut Microbiota the Missing Link? Nutrients. 2022; 14: 1631. https://doi.org/10.3390/ nu14081631
4. De Martinis M, Sirufo MM, Suppa M, Ginaldi L. New Perspectives in Food Allergy. Int J. Mol. Sci. 2020;21 (4): 1474. DOI: 10.3390/ijms21041474
5. Rey-Mariño, A., Francino, M. P. Nutrition, Gut Microbiota, and Allergy Development in Infants. Nutrients. 2022; 14: 4316. https:// doi.org/10.3390/nu14204316
6. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989; 299: 1259–60. DOI: 10.1136/bmj.299.6710.1259
7. Mitselou N, Hallberg J, Stephansson O, Almqvist C, Melen E, Ludvigsson JF. Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children. J. Allergy Clin. Immunol. 2018; 142: 1510–4. e2. DOI: 10.1016/j.jaci.2018.06.044
8. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A metaanalysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy. 2008; 38: 629e33. DOI: 10.1111/j.1365–2222.2007.02780.x
9. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin. Exp. Allergy. 2008; 38: 634e42. DOI: 10.1111/j.1365–2222.2008.02939.x
10. Yamamoto-Hanada K, Yang L, Narita M, Saito H, Ohya Y. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann Allergy Asthma Immunol 2017; 119: 54e8. DOI: 10.1016/j.anai.2017.05.013
11. Mitre E, Susi A, Kropp LE, Schwartz DJ, Gorman GH, Nylund CM. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood. JAMA Pediatr. 2018; 172: e180315. DOI: 10.1001/jamapediatrics.2018.0315
12. Tsakok T, McKeever TM, Yeo L, Flohr C. Does early life exposure to antibiotics increase the risk of eczema? A systematic review. Br. J. Dermatol. 2013; 169: 983e91. DOI: 10.1111/bjd.12476
13. Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J. Pathol. 1963; 42: 471e83.
14. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010; 328: 1705e9. DOI: 10.1126/science.1188454
15. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500: 232e6. DOI: 10.1038/nature12331
16. Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell. Host. Microbe. 2013; 14: 559e70. DOI: 10.1016/j.chom.2013.10.004
17. Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 2001; 107: 153e9. DOI: 10.1067/mai.2001.111142
18. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012; 13: 440e7. DOI: 10.1038/embor.2012.32
19. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014; 111: 13145e50. DOI: 10.1073/pnas.1412008111
20. Sansom DM, Walker LS. The role of CD 28 and cytotoxic T-lymphocyte antigen4 (CTLA‑4) in regulatory T-cell biology. Immunol Rev. 2006; 212: 131e48. DOI: 10.1111/j.0105–2896.2006.00419.x
21. Fontenot JD, Gavin MA, Rudensky AY. Pillars Article: Foxp3 programs the development and function of CD 4+CD 25+ regulatory T cells. J. Immunol. 2017; 198: 986e92. DOI: 10.1038/ni904
22. Wannemuehler M. et al. Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J. Immunol. 1982. 129 (3): 959–965.
23. Hacini-Rachinel F. et al. Intestinal dendritic cell licensing through Toll-like receptor 4 is required for oral tolerance in allergic contact dermatitis. J. Allergy Clin Immunol. 2018; 141 (1): 163–170. DOI: 10.1016/j.jaci.2017.02.022
24. Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA. MyD 88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity. 2015; 43 (2): 289–303. DOI: 10.1016/j.immuni.2015.06.014
25. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2014; 118 (2): 229–241. DOI: 10.1016/j.cell.2004.07.002
26. Han D, Walsh MC, Cejas PJ, Dang NN, Kim YF, Kim J, CharrierHisamuddin L, Chau L, Zhang Q, Bittinger K, Bushman FD, Turka LA, Shen H, Reizis B, DeFranco AL, Wu GD, Choi Y. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity. 2013; 38 (6): 1211–1222. DOI: 10.1016/j.immuni.2013.05.012
27. Plunkett CH, Nagler CR. The influence of the microbiome on allergic sensitization to food. J. Immunol. 2017; 198 (2): 581–589. DOI: 10.4049/jimmunol.1601266
28. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505 (7484): 559–563. DOI: 10.1038/nature12820
29. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504 (7480): 446–450. DOI: 10.1038/nature12721
30. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P. et al. Early-life gut microbiome composition and milk allergy resolution. J. Allergy ClinImmunol. 2016; 138: 1122e30. DOI: 10.1016/j.jaci.2016.03.041
31. Chen CC, Chen KJ, Kong MS, Chang HJ, Huang JL. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr. Allergy. Immunol. 2016; 27: 254e62. DOI: 10.1111/pai.12522
32. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016; 22: 1187e91. DOI: 10.1038/nm.4176
33. Tanaka M, Korenori Y, Washio M, Kobayashi T, Momoda R, Kiyohara C, et al. Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood. FEMS Microbiol. Ecol. 2017; 93. https://doi.org/10.1093/femsec/fix099
34. Arrieta MC, Arevalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 2018; 142: 424–34.e10. DOI: 10.1016/j.jaci.2017.08.041
35. Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, et al. Early-life gut microbiome and egg allergy. Allergy. 2018; 73: 1515e24. DOI: 10.1111/all.13389
36. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018; 73: 145e52. DOI: 10.1111/all.13232
37. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018; 9: 141. DOI: 10.1038/s41467–017–02573–2
38. Simonyte Sjodin K, Hammarstrom ML, Ryden P, Sjodin A, Hernell O, Engstrand L. et al. Temporal and long-term gut microbiota variation in allergic disease: a prospective study from infancy to school age. Allergy. 2019; 74: 176e85. DOI: 10.1111/all.13485
39. Bannier M, van Best N, Bervoets L, Savelkoul PHM, Hornef MW, van de Kant KDG. et al. Gut microbiota in wheezing preschool children and the association with childhood asthma. Allergy. 2020; 75: 1473e6 DOI: 10.1111/all.14156
40. Los-Rycharska E, Golebiewski M, Sikora M, Grzybowski T, Gorzkiewicz M, Popielarz M. et al. A combined analysis of gut and skin microbiota in infants with food allergy and atopic dermatitis: a pilot study. Nutrients. 2021; 13: 1682. DOI: 10.3390/nu13051682
41. Mennini M., Reddel S., Del Chierico F., Gardini S., Quagliariello A., Vernocchi P., Valluzzi R. L., Fierro V., Riccardi C., Napolitano T. et al. Gut Microbiota Profile in Children with IgE-Mediated Cow’s Milk Allergy and Cow’s Milk Sensitization and Probiotic Intestinal Persistence Evaluation. Int. J. Mol. Sci. 2021; 22: 1649. https://doi.org/10.3390/ijms22041649
42. Mahdavinia M, Fyolek JP, Jiang J, Thivalapill N, Bilaver LA, Warren C, Fox S, Nimmagadda SR, Newmark PJ, Sharma H, Assa’ad A, Seed PC, Gupta RS. Gut microbiome is associated with asthma and race in children with food allergy. J. Allergy Clin. Immunol. 2023 Dec; 152 (6): 1541–1549.e1. DOI: 10.1016/j.jaci.2023.07.024
43. Yamagishi M, Akagawa S, Akagawa Y, Nakai Y, Yamanouchi S, Kimata T, et al. Decreased butyric acid-producing bacteria in gut microbiota of children with egg allergy. Allergy. 2021; 76: 2279e82. DOI: 10.1111/all.14795
44. Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Allergol Int. 2022; 71 (3): 301–309. DOI: 10.1016/j.alit.2022.02.004
45. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C. et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019; 74: 799e809. DOI: 10.1111/all.13660
46. Zolkiewicz J, Marzec A, Ruszczynski M, Feleszko W. Postbiotics-A step beyond preand probiotics. Nutrients. 2020; 12: 2189. DOI: 10.3390/nu12082189
47. Berni Canani R, Paparo L, Nocerino R, Di Scala C, Della Gatta G, Maddalena Y, Buono A, Bruno C, Voto L, Ercolini D. Gut Microbiome as Target for Innovative Strategies Against Food Allergy. Front Immunol. 2019 Feb 15; 10: 191. DOI: 10.3389/fimmu.2019.00191.
Рецензия
Для цитирования:
Макарова С.Г., Фисенко А.П., Гордеева И.Г., Емельяшенков Е.Е. Современное понимание взаимосвязи кишечной микробиоты и развития аллергических заболеваний у детей. Медицинский алфавит. 2024;(16):48‑52. https://doi.org/10.33667/2078-5631-2024-16-48-52
For citation:
Makarova S.G., Fisenko A.P., Gordeeva I.G., Emeliashenkov E.E. Modern understanding of the relationship between intestinal microbiota and development of allergic diseases in children. Medical alphabet. 2024;(16):48‑52. (In Russ.) https://doi.org/10.33667/2078-5631-2024-16-48-52