

Сезонные коронавирусы и SARS-CoV-2: структурно-функциональные, клинико- эпидемиологические характеристики и гуморальный перекрестный иммунитет
https://doi.org/10.33667/2078-5631-2024-4-55-59
Аннотация
Предполагается, что формирование и поддержание иммунитета к SARS-CoV-2 может зависеть от иммунного статуса по другим инфекциям, возбудителями которых являются коронавирусы человека (HCoV), называемые сезонными: HCoV-OC 43, HCoV-HKU 1, HCoV-229E, HCoV-NL63. Эти вирусы распространены повсеместно и обычно вызывают легкие и умеренные респираторные заболевания сезонного характера, передающиеся преимущественно воздушно-капельным путем. В обзоре представлен сравнительный анализ основных структурно-функциональных, клинико-эпидемиологических характеристик сезонных HCoV и SARS-CoV-2. Систематизация такого рода информации в сочетании с данными о перекрестном иммунитете к разным HCoV может позволить выявить влияющие на иммунитет к SARS-CoV-2 факторы и учитывать их при совершенствовании стратегии санитарно-эпидемиологического контроля COVID-19.
Ключевые слова
Об авторах
Ю. В. ШабалинаРоссия
Шабалина Юлия Вадимовна, ст. преподаватель кафедры биологической химии, клинической лабораторной диагностики
г. Барнаул
С. А. Ельчанинова
Россия
Ельчанинова Светлана Александровна, д. б. н., проф. кафедры биологической химии, клинической лабораторной диагностики
г. Барнаул
Список литературы
1. Woo P. C.Y., de Groot R. J., Haagmans B. et al. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J Gen Virol. 2023; 104 (4): 10.1099/jgv.0.001843. https://doi.org/10.1099/jgv.0.001843
2. Schalk A. F., Hawn M. C. An apparently new respiratory disease of baby chicks. J. Am. Vet. Med. Assoc. 1931 (78): 19.
3. Li Z., Tomlinson A. C., Wong A. Н. et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife. 2019 (8): e51230. https://doi.org/10.7554/elife.51230
4. Cui J., Li F., Shi Z. L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17 (3): 181–192. https://doi.org/10.1038/s41579–018–0118–9
5. Ekrami E., Pouresmaieli M., Barati F. et al. Potential Diagnostic Systems for Coronavirus Detection: A Critical Review. Biol Proced Online. 2020 (22): 21. https://doi.org/10.1186/s12575–020–00134–4
6. Hamre D., Procknow J. J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966; 121 (1): 190–193. https://doi.org/10.3181/00379727–121–30734
7. Tyrrell D. A., Bynoe M. L. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965; 1 (5448): 1467–1470. https://doi.org/10.1136/bmj.1.5448.1467
8. Ortega N., Ribes M., Vidal M. et al. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat Commun. 2021; 12 (1): 4740. https://doi.org/10.1038/s41467–021–24979–9
9. Beretta A., Cranage M., Zipeto D. Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis? Front Immunol. 2020; (11): 567710. https://doi.org/10.3389/fimmu.2020.567710
10. Almeida J. D. et al. Virology: Coronaviruses. Nature. 1968 (220): 650. https://doi.org/10.1038/220650b0
11. Yao H., Song Y., Chen Y. et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell. 2020; 183 (3): 730–738. e13.https://doi.org/10.1016/j.cell.2020.09.018
12. Weiss S. R., Leibowitz J. L. Coronavirus pathogenesis. Adv Virus Res. 2011 (81): 85–164. https://doi.org/10.1016/b978–0–12–385885–6.00009–2
13. Li F. Receptor recognition mechanisms of coronaviruses: A decade of structural studies. J Virol. 2015; 89 (4): 1954–1964. https://doi.org/10.1128/jvi.02615–14
14. Schoeman D., Fielding B. C. Coronavirus envelope protein: current knowledge. Virol J. 2019; 16 (1): 69. https://doi.org/10.1186/s12985–019–1182–0
15. Kumar P., Kumar A., Garg N. et al. An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. J Biomol Struct Dyn. 2023; 41 (3): 1062–1071. https://doi.org/10.1080/07391102.2021.2016490
16. Grunewald M. E., Fehr A. R., Athmer J. et al. The coronavirus nucleocapsid protein is ADP-ribosylated. Virology. 2018 (517): 62–68. https://doi.org/10.1016/j.virol.2017.11.020
17. Brian D. A., Baric R. S. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005 (287): 1–30. https://doi.org/10.1007/3–540–26765–4_1
18. V’kovski P., Kratzel A., Steiner S. et al. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol. 2021; 19 (3): 155–170. https://doi.org/10.1038/s41579–020–00468–6
19. Langereis M. A., van Vliet A. L., Boot W. et al. Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J Virol. 2010; 84 (17): 8970–8974. https://doi.org/10.1128/jvi.00566–10
20. Zhang W., Zheng Q., Yan M. et al. Structural characterization of the HCoV-229E fusion core. BiochemBiophys Res Commun. 2018; 497 (2): 705–712. https://doi.org/10.1016/j.bbrc.2018.02.136
21. Wu A., Peng Y., Huang B. et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020; 27 (3): 325–328. https://doi.org/10.1016/j.chom.2020.02.001
22. Lim Y. X., Ng Y. L., Tam J. P. et al. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016; 4 (3): 26. https://doi.org/10.3390/diseases4030026
23. Li Q., Guan X., Wu P. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; 382 (13): 1199–1207. https://doi.org/10.1056/nejmoa2001316
24. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395 (10223): 507–513. https://doi.org/10.1016/s0140–6736(20)30211–7
25. Netland J., Meyerholz D. K., Moore S. et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE 2. J Virol. 2008; 82 (15): 7264–7275. https://doi.org/10.1128/jvi.00737–08
26. Kesheh M. M., Hosseini P., Soltani S. et al. An overview on the seven pathogenic human coronaviruses. Rev Med Virol. 2022; 32 (2): e2282. https://doi.org/10.1002/rmv.2282
27. Akerlund A., Greiff L., Andersson M. et al. Mucosal exudation of fibrinogen in coronavirus-induced common colds. Acta Otolaryngol. 1993; 113 (5): 642–648. https://doi.org/10.3109/00016489309135878
28. Monto A. S. Medical reviews. Coronaviruses. Yale J Biol Med. 1974; 47 (4): 234–251.
29. Fouchier R. A., Hartwig N. G., Bestebroer T. M. et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA. 2004; 101 (16): 6212–6216. https://doi.org/10.1073/pnas.0400762101
30. Abdul-Rasool S., Fielding B. C. Understanding Human Coronavirus HCoV-NL63. Open Virol J. 2010 (4): 76–84. https://doi.org/10.2174/1874357901004010076
31. Woo P. C., Lau S. K., Chu C. M. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU 1, from patients with pneumonia. J Virol. 2005; 79 (2): 884–895. https://doi.org/10.1128/jvi.79.2.884–895.2005
32. Lau S. K., Lee P., Tsang A. K. et al. Molecular epidemiology of human coronavirus OC 43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011; 85 (21): 11325–11337. https://doi.org/10.1128/jvi.05512–11
33. Sloots T. P., McErlean P., Speicher D. J. et al. Evidence of human coronavirus HKU 1 and human bocavirus in Australian children. J Clin Virol. 2006; 35 (1): 99–102. https://doi.org/10.1016/j.jcv.2005.09.008
34. Lau S. K., Woo P. C., Yip C. C. et al. Coronavirus HKU 1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006; 44 (6): 2063–2071. https://doi.org/10.1128/jcm.02614–05
35. Gaunt E. R., Hardie A., Claas E. C. et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU 1, NL63, and OC 43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010; 48 (8): 2940–2947. https://doi.org/10.1128/jcm.00636–10
36. Vabret A., Dina J., Gouarin S. et al. Detection of the new human coronavirus HKU 1: A report of 6 cases. Clin Infect Dis. 2006; 42 (5): 634–639. https://doi.org/10.1086/500136
37. Anderson E. M., Goodwin E. C., Verma A. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell. 2021; 184 (7): 1858–1864. e10. https://doi.org/10.1016/j.cell.2021.02.010
38. Dijkman R., Jebbink M. F., El Idrissi N. B. et al. Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol. 2008; 46 (7): 2368–73. https://doi.org/10.1128/jcm.00533–08
39. Zhou W., Wang W., Wang H. et al. First infection by all four non-severe acute respiratory syndrome human coronaviruses takes place during childhood. BMC Infect Dis. 2013 (13): 433. https://doi.org/10.1186/1471–2334–13–433
40. Dispinseri S., Secchi M., Pirillo M. F. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat Commun. 2021; 12 (1): 2670. https://doi.org/10.1038/s41467–021–22958–8
41. Jamiruddin M. R., Haq M. A., Tomizawa K. et al. Longitudinal Antibody Dynamics Against Structural Proteins of SARS-CoV-2 in Three COVID-19 Patients Shows Concurrent Development of IgA, IgM, and Ig G. J Inflamm Res. 2021 (14): 2497–2506. https://doi.org/10.2147/JIR.S313188
42. Deisenhammer F., Bauer A., Kavelar C. et al. 12-month SARS-CoV-2 antibody persistency in a Tyrolean COVID-19 cohort. Wien Klin Wochenschr. 2021; 133 (23–24): 1265–1271. https://doi.org/10.1007/s00508–021–01985-x
43. Sherina N., Piralla A., Du L. et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6–8 months after the infection. Med. 2021 2 (3): 281–295.e4. https://doi.org/10.1016/j.medj.2021.02.001
44. Terpos E., Stellas D., Rosati M. et al. SARS-CoV-2 antibody kinetics eight months from COVID-19 onset: Persistence of spike antibodies but loss of neutralizing antibodies in 24 % of convalescent plasma donors. Eur J Intern Med. 2021 (890): 87–96. https://doi.org/10.1016/j.ejim.2021.05.010
45. Kolosova E. A., Shaprova O. N., Shanshin D. V. et al. Antibodies to the Spike Protein Receptor-Binding Domain of SARS-CoV-2 at 4–13 Months after COVID-19. J Clin Med. 2022 11 (14): 4053. https://doi.org/10.3390/jcm11144053
46. Li K., Huang B., Wu M. et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat Commun. 2020; 11 (1): 6044. 11. https://doi.org/10.2147/jir.S 313188
47. Dispinseri S., Secchi M., Pirillo M. F. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat Commun. 2021; 12 (1): 2670. https://doi.org/10.1038/s41467–021–22958–8
48. Aydillo T., Rombauts A., Stadlbauer D. et al. Immunological imprinting of the antibody response in COVID-19 patients. Nat Commun. 2021; 12 (1): 3781. https://doi.org/10.1038/s41467–021–23977–1
49. Lotfi R., Kalmarzi R. N., Roghani S. A. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res. 2021; 69 (3): 213–224. https://doi.org/10.1007/s12026–021–09198–0
50. Byrnes J. R., Zhou X. X., Lui I. et al. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE 2 Binding. mSphere. 2020; 5 (5): e00802–20. https://doi.org/10.1128/mSphere.00802–20
51. Bates T. A., Weinstein J. B., Farley S. et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. 2021; 34 (7): 108737. https://doi.org/10.1016/j.celrep.2021.108737
52. Zedan H. T., Nasrallah G. K. Is preexisting immunity to seasonal coronaviruses limited to cross-reactivity with SARS-CoV-2? A seroprevalence cross-sectional study in north-eastern France. Ebio Medicine. 2021 (71): 103580. https://doi.org/10.1016%2Fj.ebiom.2021.103580
53. Lim Y. X., Ng Y. L., Tam J. P. et al. Human Coronaviruses: A Review of Virus–Host Interactions. Diseases. 2016; 4 (3): 26. https://doi.org/10.3390/diseases4030026
54. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395 (10224): 565–574. https://doi.org/10.1016/s0140–6736(20)30251–8
Рецензия
Для цитирования:
Шабалина Ю.В., Ельчанинова С.А. Сезонные коронавирусы и SARS-CoV-2: структурно-функциональные, клинико- эпидемиологические характеристики и гуморальный перекрестный иммунитет. Медицинский алфавит. 2024;(4):55-59. https://doi.org/10.33667/2078-5631-2024-4-55-59
For citation:
Shabalina Yu.V., Elchaninova S.A. Seasonal coronaviruses and SARS-CoV-2: Structural, functional, clinical and epidemiological characteristics and humoral cross-immunity. Medical alphabet. 2024;(4):55-59. (In Russ.) https://doi.org/10.33667/2078-5631-2024-4-55-59