Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Сезонные коронавирусы и SARS-CoV-2: структурно-функциональные, клинико- эпидемиологические характеристики и гуморальный перекрестный иммунитет

https://doi.org/10.33667/2078-5631-2024-4-55-59

Аннотация

Предполагается, что формирование и поддержание иммунитета к SARS-CoV-2 может зависеть от иммунного статуса по другим инфекциям, возбудителями которых являются коронавирусы человека (HCoV), называемые сезонными: HCoV-OC 43, HCoV-HKU 1, HCoV-229E, HCoV-NL63. Эти вирусы распространены повсеместно и обычно вызывают легкие и умеренные респираторные заболевания сезонного характера, передающиеся преимущественно воздушно-капельным путем. В обзоре представлен сравнительный анализ основных структурно-функциональных, клинико-эпидемиологических характеристик сезонных HCoV и SARS-CoV-2. Систематизация такого рода информации в сочетании с данными о перекрестном иммунитете к разным HCoV может позволить выявить влияющие на иммунитет к SARS-CoV-2 факторы и учитывать их при совершенствовании стратегии санитарно-эпидемиологического контроля COVID-19.

Об авторах

Ю. В. Шабалина
ФГБОУ ВО «Алтайский государственный медицинский университет» Минздрава России
Россия

Шабалина Юлия Вадимовна, ст. преподаватель кафедры биологической химии, клинической лабораторной диагностики

г. Барнаул



С. А. Ельчанинова
ФГБОУ ВО «Алтайский государственный медицинский университет» Минздрава России
Россия

Ельчанинова Светлана Александровна, д. б. н., проф. кафедры биологической химии, клинической лабораторной диагностики

г. Барнаул



Список литературы

1. Woo P. C.Y., de Groot R. J., Haagmans B. et al. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J Gen Virol. 2023; 104 (4): 10.1099/jgv.0.001843. https://doi.org/10.1099/jgv.0.001843

2. Schalk A. F., Hawn M. C. An apparently new respiratory disease of baby chicks. J. Am. Vet. Med. Assoc. 1931 (78): 19.

3. Li Z., Tomlinson A. C., Wong A. Н. et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife. 2019 (8): e51230. https://doi.org/10.7554/elife.51230

4. Cui J., Li F., Shi Z. L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17 (3): 181–192. https://doi.org/10.1038/s41579–018–0118–9

5. Ekrami E., Pouresmaieli M., Barati F. et al. Potential Diagnostic Systems for Coronavirus Detection: A Critical Review. Biol Proced Online. 2020 (22): 21. https://doi.org/10.1186/s12575–020–00134–4

6. Hamre D., Procknow J. J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966; 121 (1): 190–193. https://doi.org/10.3181/00379727–121–30734

7. Tyrrell D. A., Bynoe M. L. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965; 1 (5448): 1467–1470. https://doi.org/10.1136/bmj.1.5448.1467

8. Ortega N., Ribes M., Vidal M. et al. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat Commun. 2021; 12 (1): 4740. https://doi.org/10.1038/s41467–021–24979–9

9. Beretta A., Cranage M., Zipeto D. Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis? Front Immunol. 2020; (11): 567710. https://doi.org/10.3389/fimmu.2020.567710

10. Almeida J. D. et al. Virology: Coronaviruses. Nature. 1968 (220): 650. https://doi.org/10.1038/220650b0

11. Yao H., Song Y., Chen Y. et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell. 2020; 183 (3): 730–738. e13.https://doi.org/10.1016/j.cell.2020.09.018

12. Weiss S. R., Leibowitz J. L. Coronavirus pathogenesis. Adv Virus Res. 2011 (81): 85–164. https://doi.org/10.1016/b978–0–12–385885–6.00009–2

13. Li F. Receptor recognition mechanisms of coronaviruses: A decade of structural studies. J Virol. 2015; 89 (4): 1954–1964. https://doi.org/10.1128/jvi.02615–14

14. Schoeman D., Fielding B. C. Coronavirus envelope protein: current knowledge. Virol J. 2019; 16 (1): 69. https://doi.org/10.1186/s12985–019–1182–0

15. Kumar P., Kumar A., Garg N. et al. An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. J Biomol Struct Dyn. 2023; 41 (3): 1062–1071. https://doi.org/10.1080/07391102.2021.2016490

16. Grunewald M. E., Fehr A. R., Athmer J. et al. The coronavirus nucleocapsid protein is ADP-ribosylated. Virology. 2018 (517): 62–68. https://doi.org/10.1016/j.virol.2017.11.020

17. Brian D. A., Baric R. S. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005 (287): 1–30. https://doi.org/10.1007/3–540–26765–4_1

18. V’kovski P., Kratzel A., Steiner S. et al. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol. 2021; 19 (3): 155–170. https://doi.org/10.1038/s41579–020–00468–6

19. Langereis M. A., van Vliet A. L., Boot W. et al. Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J Virol. 2010; 84 (17): 8970–8974. https://doi.org/10.1128/jvi.00566–10

20. Zhang W., Zheng Q., Yan M. et al. Structural characterization of the HCoV-229E fusion core. BiochemBiophys Res Commun. 2018; 497 (2): 705–712. https://doi.org/10.1016/j.bbrc.2018.02.136

21. Wu A., Peng Y., Huang B. et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020; 27 (3): 325–328. https://doi.org/10.1016/j.chom.2020.02.001

22. Lim Y. X., Ng Y. L., Tam J. P. et al. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016; 4 (3): 26. https://doi.org/10.3390/diseases4030026

23. Li Q., Guan X., Wu P. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; 382 (13): 1199–1207. https://doi.org/10.1056/nejmoa2001316

24. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395 (10223): 507–513. https://doi.org/10.1016/s0140–6736(20)30211–7

25. Netland J., Meyerholz D. K., Moore S. et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE 2. J Virol. 2008; 82 (15): 7264–7275. https://doi.org/10.1128/jvi.00737–08

26. Kesheh M. M., Hosseini P., Soltani S. et al. An overview on the seven pathogenic human coronaviruses. Rev Med Virol. 2022; 32 (2): e2282. https://doi.org/10.1002/rmv.2282

27. Akerlund A., Greiff L., Andersson M. et al. Mucosal exudation of fibrinogen in coronavirus-induced common colds. Acta Otolaryngol. 1993; 113 (5): 642–648. https://doi.org/10.3109/00016489309135878

28. Monto A. S. Medical reviews. Coronaviruses. Yale J Biol Med. 1974; 47 (4): 234–251.

29. Fouchier R. A., Hartwig N. G., Bestebroer T. M. et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA. 2004; 101 (16): 6212–6216. https://doi.org/10.1073/pnas.0400762101

30. Abdul-Rasool S., Fielding B. C. Understanding Human Coronavirus HCoV-NL63. Open Virol J. 2010 (4): 76–84. https://doi.org/10.2174/1874357901004010076

31. Woo P. C., Lau S. K., Chu C. M. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU 1, from patients with pneumonia. J Virol. 2005; 79 (2): 884–895. https://doi.org/10.1128/jvi.79.2.884–895.2005

32. Lau S. K., Lee P., Tsang A. K. et al. Molecular epidemiology of human coronavirus OC 43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011; 85 (21): 11325–11337. https://doi.org/10.1128/jvi.05512–11

33. Sloots T. P., McErlean P., Speicher D. J. et al. Evidence of human coronavirus HKU 1 and human bocavirus in Australian children. J Clin Virol. 2006; 35 (1): 99–102. https://doi.org/10.1016/j.jcv.2005.09.008

34. Lau S. K., Woo P. C., Yip C. C. et al. Coronavirus HKU 1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006; 44 (6): 2063–2071. https://doi.org/10.1128/jcm.02614–05

35. Gaunt E. R., Hardie A., Claas E. C. et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU 1, NL63, and OC 43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010; 48 (8): 2940–2947. https://doi.org/10.1128/jcm.00636–10

36. Vabret A., Dina J., Gouarin S. et al. Detection of the new human coronavirus HKU 1: A report of 6 cases. Clin Infect Dis. 2006; 42 (5): 634–639. https://doi.org/10.1086/500136

37. Anderson E. M., Goodwin E. C., Verma A. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell. 2021; 184 (7): 1858–1864. e10. https://doi.org/10.1016/j.cell.2021.02.010

38. Dijkman R., Jebbink M. F., El Idrissi N. B. et al. Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol. 2008; 46 (7): 2368–73. https://doi.org/10.1128/jcm.00533–08

39. Zhou W., Wang W., Wang H. et al. First infection by all four non-severe acute respiratory syndrome human coronaviruses takes place during childhood. BMC Infect Dis. 2013 (13): 433. https://doi.org/10.1186/1471–2334–13–433

40. Dispinseri S., Secchi M., Pirillo M. F. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat Commun. 2021; 12 (1): 2670. https://doi.org/10.1038/s41467–021–22958–8

41. Jamiruddin M. R., Haq M. A., Tomizawa K. et al. Longitudinal Antibody Dynamics Against Structural Proteins of SARS-CoV-2 in Three COVID-19 Patients Shows Concurrent Development of IgA, IgM, and Ig G. J Inflamm Res. 2021 (14): 2497–2506. https://doi.org/10.2147/JIR.S313188

42. Deisenhammer F., Bauer A., Kavelar C. et al. 12-month SARS-CoV-2 antibody persistency in a Tyrolean COVID-19 cohort. Wien Klin Wochenschr. 2021; 133 (23–24): 1265–1271. https://doi.org/10.1007/s00508–021–01985-x

43. Sherina N., Piralla A., Du L. et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6–8 months after the infection. Med. 2021 2 (3): 281–295.e4. https://doi.org/10.1016/j.medj.2021.02.001

44. Terpos E., Stellas D., Rosati M. et al. SARS-CoV-2 antibody kinetics eight months from COVID-19 onset: Persistence of spike antibodies but loss of neutralizing antibodies in 24 % of convalescent plasma donors. Eur J Intern Med. 2021 (890): 87–96. https://doi.org/10.1016/j.ejim.2021.05.010

45. Kolosova E. A., Shaprova O. N., Shanshin D. V. et al. Antibodies to the Spike Protein Receptor-Binding Domain of SARS-CoV-2 at 4–13 Months after COVID-19. J Clin Med. 2022 11 (14): 4053. https://doi.org/10.3390/jcm11144053

46. Li K., Huang B., Wu M. et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat Commun. 2020; 11 (1): 6044. 11. https://doi.org/10.2147/jir.S 313188

47. Dispinseri S., Secchi M., Pirillo M. F. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat Commun. 2021; 12 (1): 2670. https://doi.org/10.1038/s41467–021–22958–8

48. Aydillo T., Rombauts A., Stadlbauer D. et al. Immunological imprinting of the antibody response in COVID-19 patients. Nat Commun. 2021; 12 (1): 3781. https://doi.org/10.1038/s41467–021–23977–1

49. Lotfi R., Kalmarzi R. N., Roghani S. A. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res. 2021; 69 (3): 213–224. https://doi.org/10.1007/s12026–021–09198–0

50. Byrnes J. R., Zhou X. X., Lui I. et al. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE 2 Binding. mSphere. 2020; 5 (5): e00802–20. https://doi.org/10.1128/mSphere.00802–20

51. Bates T. A., Weinstein J. B., Farley S. et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. 2021; 34 (7): 108737. https://doi.org/10.1016/j.celrep.2021.108737

52. Zedan H. T., Nasrallah G. K. Is preexisting immunity to seasonal coronaviruses limited to cross-reactivity with SARS-CoV-2? A seroprevalence cross-sectional study in north-eastern France. Ebio Medicine. 2021 (71): 103580. https://doi.org/10.1016%2Fj.ebiom.2021.103580

53. Lim Y. X., Ng Y. L., Tam J. P. et al. Human Coronaviruses: A Review of Virus–Host Interactions. Diseases. 2016; 4 (3): 26. https://doi.org/10.3390/diseases4030026

54. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395 (10224): 565–574. https://doi.org/10.1016/s0140–6736(20)30251–8


Рецензия

Для цитирования:


Шабалина Ю.В., Ельчанинова С.А. Сезонные коронавирусы и SARS-CoV-2: структурно-функциональные, клинико- эпидемиологические характеристики и гуморальный перекрестный иммунитет. Медицинский алфавит. 2024;(4):55-59. https://doi.org/10.33667/2078-5631-2024-4-55-59

For citation:


Shabalina Yu.V., Elchaninova S.A. Seasonal coronaviruses and SARS-CoV-2: Structural, functional, clinical and epidemiological characteristics and humoral cross-immunity. Medical alphabet. 2024;(4):55-59. (In Russ.) https://doi.org/10.33667/2078-5631-2024-4-55-59

Просмотров: 276


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)