Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Specificity of seizure genesis during electroconvulsive therapy and modified pentylenetetrazole kindling

https://doi.org/10.33667/2078-5631-2023-21-39-43

Abstract

Comparison of the development of chemically induced seizures in the experiment with the change in convulsive thresholds during electroconvulsive therapy (ECT) has demonstrated that repeated ‘chemical’ seizures can initiate the development of the kindling phenomenon, but regular ECT from the first to the 14th session most likely cause an increase in convulsive thresholds. However, the repeated ECT over 15 sessions is associated with a rapid decrease in the threshold current dose and probable dysregulation of endogenous anticonvulsant mechanisms, with the risk of the development of uncontrolled paroxysmal conditions and the risk of organic CNS lesions. The mechanisms of the convulsive action of ECT and pentylenetetrazolinduced kindling are fundamentally different. Differences in the pathogenesis of systemic convulsive reactions determine the divergent change in seizure thresholds during ECT and pentylenetetrazol stimulations.

About the Authors

V. L. Kozlovskii
St. Petersburg Bekhterev Psychoneurological Research Institute
Russian Federation

Kozlovskii Vladimir L., DM Sci (habil.), leading researcher at Scientific and Organizational Dept.

Saint Petersburg



D. N. Kosterin
St. Petersburg Bekhterev Psychoneurological Research Institute
Russian Federation

Kosterin Dmitry N., researcher at Dept for Treatment of Mental Disorders in Adolescents and Young Adults

Saint Petersburg



O. V. Lepik
St. Petersburg Bekhterev Psychoneurological Research Institute
Russian Federation

Lepik Olga V., junior researcher at Dept for Treatment of Mental Disorders in Adolescents and Young Adults

Saint Petersburg



M. Yu. Popov
St. Petersburg Bekhterev Psychoneurological Research Institute
Russian Federation

Popov Mikhail Yu., DM Sci (habil.), chief researcher, head of Dept for Treatment of Mental Disorders in Adolescents and Young Adults

Saint Petersburg

Scopus ID: 57201876256



References

1. Nelsion A. I. Electroconvulsive therapy in psychiatry, narcology and neurology. M.: BINOM. Knowledge Laboratory; 2005: 368.

2. Sizov S.V, Baryl’nik Yu. B. Combined use of antipsychotics and electroconvulsive therapy in treatment-resistant schizophrenia. Review of Psychiatry and Medical Psychology n. a. V. M. Bekhterev. 2017; 3: 23-33.

3. Gangadhar B. N., Girish K., Janakiramiah N., Subbakrishna D. K., Parameshwara G., Prasad K. M. Formula method for stimulus setting in bilateral electroconvulsive therapy: relevance of age. The Journal of ECT. 1998; 14 (4): 259-265. https://doi.org/10.1097/00124509-199812000-00008

4. Girish K., Mayur P. M., Saravanan E. S.M., Janakiramaiah N., Gangadhar B. N., Subbakrishna D. K., Umamaheswara Rao G. S. Seizure threshold estimation by formula method: a prospective study in unilateral ECT. The Journal of ECT. 2000; 16 (3): 258-262. https://doi.org/10.1097/00124509-200009000-00006

5. Ithal D., Arumugham S. S., Kumar C. N., Venkatapura R., Thirthalli J., Gangadhar B. N. Comparison of cognitive adverse effects and efficacy of 2 pulse widths (0.5 ms and 1.5 ms) of brief pulse bilateral electroconvulsive therapy in patients with schizophrenia - A randomized single blind controlled trial. Schizophrenia Research. 2020; Feb; 216: 520-522. https://doi.org/10.1016/j.schres.2019.11.062

6. Dabrowski M., Parnowski T. Clinical analysis of safety and effectiveness of electroconvulsive therapy. Psychiatr Pol. 2012; 46 (3): 345-360.

7. Valente S. M. Electroconvulsive therapy. Arch Psychiatr Nurs. 1991; 5 (4): 223-228. https://doi.org/10.1016/0883-9417(91)90050-f

8. Wada J. A., Osawa T. Spontaneous recurrent seizure state induced by daily electric amygdaloid stimulation in Senegalese baboons (Papio papio). Neurology. 1976; 26 (3): 273. https://doi.org/10.1212/wnl.26.3.273

9. Loscher W., Honack D. Profile of ucb L059. A novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. European Journal of Pharmacology. 1993; 232 (2-3): 147-158. https://doi.org/10.1016/0014-2999(93)90768-D

10. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012; Chapter 9: Unit9.37. https://doi.org/10.1002/0471142301.ns0937s58

11. Yazdi A., Doostmohammadi M., Pourhossein Majarshin F., Beheshti S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav. 2020; 105: 106956. https://doi.org/10.1016/j.yebeh.2020.106956

12. Samokhina E., Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci. 2018; 128 (11): 1086-1096. https://doi.org/10.1080/00207454.2018.1481064

13. Haefely W. Benzodiazepine interactions with GABA receptors. Neurosci Lett. 1984; 47 (3): 201-206. https://doi.org/10.1016/0304-3940(84)90514-7

14. Kozlovskii V. L. A method for modeling paroxysmal disorder. Patent for invention No. 2434306, application 209149137, reg. November 20, 2011, publ. 20.11.2011, Bulletin No. 3. Link active as of 06/05/2020. http://www.freepatent.ru/patents/2434306

15. Kozlovskii V. L., Mosin A. E., Ivakina L. V. The effect of the subchronic administration of calcium-channel blockers on CNS excitability. Experimental and Clinical Pharmacology. 1996; 59 (1): 14-16.

16. Bingmann D., Speckmann E.-J. Specific supression of pentylentetrazol-induced epileptiform dischargee in CA3 neurons (hippocampal slice, guinea pig) by the organic calcium antagonists flunarizine and verapamil. Exp. Brain Res. 1989; 74 (2): 239-248. https://doi.org/10.1007/bf00248856

17. Dam A. M. Epilepsy and neuron loss in the hippocampus. Epilepsia. 1980; 21 (6): 617-629. https://doi.org/10.1111/j.1528-1157.1980.tb04315.x

18. Pavlova T. V., Yakovlev A. A., Stepanichev M. Y., Gulyaeva N. V. Pentylenetetrazol kindling in rats: Is neurodegeneration associated with manifestations of convulsive activity? Neurosci Behav Physiol. 2006; 36 (7): 741-748. PMID: 16841155. https://doi.org/10.1007/s11055-006-0082-0

19. Ingvar M., Morgan P. F., Auer R. N. The nature of timing of excitotoxic neuronal necrosis in the cerebral cortex, hippocampus and thalamus due to flurothyl-induced status epilepticus. Acta Neurophatol. 1988; 75 (4): 362-369. https://doi.org/10.1007/bf00687789


Review

For citations:


Kozlovskii V.L., Kosterin D.N., Lepik O.V., Popov M.Yu. Specificity of seizure genesis during electroconvulsive therapy and modified pentylenetetrazole kindling. Medical alphabet. 2023;(21):39-43. (In Russ.) https://doi.org/10.33667/2078-5631-2023-21-39-43

Views: 221


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)