Preview

Medical alphabet

Advanced search

Thrombosis on background of COVID-19 in middle-aged people

https://doi.org/10.33667/2078-5631-2022-19-38-43

Abstract

   This review presents the features of coagulopathy and thrombotic risk in COVID-19 in middle-aged people. A consistent increase in the D-dimer and the presence of thrombosis and PE in seriously ill middle-aged patients with COVID-19 was shown with a decrease in other blood clotting parameters, such as fibrinogen, platelets or antithrombin, which are associated with DIC syndrome. Therefore, there is a need to identify an increased risk of thrombotic events at an early stage and prevent thrombotic events and organ damage as much as possible. The use of thrombolytic therapy is also being considered. Currently, great efforts are being made by the international medical and scientific communities, the new coronovirus infection COVID-19 is a problem and the prognosis for hospitalized patients with COVID-19, especially in the critical form, continues to be unfavorable not only for elderly and old patients, but also for middle-aged patients. age. Despite the fact that this disease is considered multifactorial, thrombotic complications play an important role in the further prognosis in this category of patients.

About the Authors

L. D. Khidirova
Novosibirsk State Medical University
Russian Federation

Lyudmila D. Hidirova, DM Sci (habil.), professor

Dept of Pharmacology, Clinical Pharmacology and Evidence-Based Medicine

Novosibirsk



N. P. Ilyinykh
Novosibirsk State Medical University
Russian Federation

Natalia P. Ilinykh, 6th-year student

Novosibirsk



P. G. Madonov
Novosibirsk State Medical University
Russian Federation

Pavel G. Madonov, DM Sci (habil.), professor, head of Dept

Dept of Pharmacology, Clinical Pharmacology and Evidence-Based Medicine

Novosibirsk



References

1. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 2020; 18: 1324–1329. https://doi.org/10.1111/jth.14859

2. Klok F. A., Kruip M. J., van der Meer N. J., Arbous M. S., Gommers D. A., Kant K. M., Kaptein F. H., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020, 191: 145–147. https://doi.org/10.1016/j.thromres.2020.04.013

3. Adam S. S., Key N. S., Greenberg C. S. D-dimer antigen: current concepts and future prospects. Blood 2009, 113: 2878–2887 https://doi.org/10.1182/blood-2008–06–165845

4. Li Y., Zhao K., Wei H., Chen W., Wang W., Jia L., Liu Q., et al. Dynamic relationship between D-dimer and COVID-19 severity. Br J Haematol 2020. https://doi.org/10.1111/bjh.16811

5. Wang T., Chen R., Liu C., Liang W., Guan W., Tang R., Tang C., et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haemato 2020; (7): 362–363. https://doi.org/10.1016/s2352–3026(20)30109–5

6. Ñamendys-Silva S. A. Respiratory support for patients with COVID-19 infection. Lancet Respir Med 2020, 8: 18. https://doi.org/10.1016/S2213–2600(20)30110–7

7. De Wit E., van Doremalen N., Falzarano D., Munster V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14 (8): 523–534. https://doi.org/10.1038/nrmicro.2016.81

8. Zhang H., Penninger J. M., Li Y., Zhong N., Slutsky A. S. Angiotensin-converting enzyme 2 (ACE 2) as a SARS-CoV-2 receptor: molecular me chanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–590. https://doi.org/10.1007/s00134–020–05985–9

9. Ng K., Wu A., Cheng V., et al. Pulmonary artery thrombosis in a patient with severe acute respiratory syndrome. Postgrad Med J. 2005; 81 (956): 3. https://doi.org/10.1136/pgmj.2004.030049

10. Dosquet C., Weill D., Wautier J. L. Cytokines and thrombosis. J Cardiovasc Pharmacol. 1995; 25 (suppl 2): S 13–S 19. https://doi.org/10.1097/00005344–199500252–00004

11. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–847. https:// doi: 10.1111/jth.14768

12. Xu J. F., Wang L., Zhao L., et al. Risk assessment of venous thromboembolism and bleeding in COVID-19 patients. Research Sqare. 2020. https://doi.org/10.21203/rs.3.rs-18340/v1

13. Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (6): 1421–1424.

14. Klok F. A., Kruip M. J., Van der Meer N. J., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. https://doi.org/10.1016/j.thromres.2020.04.013

15. Demelo-Rodriguez P., Cervilla-Munoz E., Ordieres-Ortega L., et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020; 192: 23–26. https://doi.org/10.1016/j.thromres.2020.05.018

16. Eljilany I., Elzouki A. D-Dimer, Fibrinogen, and IL-6 in COVID-19 Patients with Sus-pected Venous Thromboembolism: A Narrative Review. Vasc Health Risk Manag. 2020 Nov 13; 16: 455–462. https://doi.org/10.2147/VHRM.S280962

17. Zhang Y., Xiao M., Zhang S., et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020; 382 (17): e38. https://doi.org/10.1056/nejmc2007575

18. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18 (5): 1094–1099. https://doi.org/10.1111/jth.14817

19. Liu Y., Mu S., Li X., Liang Y., Wang L., Ma X. Unfractionated heparin alleviates sepsis-induced acute lung injury by protecting tight junctions. J Surg Res. 2019; 6 (238): 175–185. https://doi.org/10.1016/j.jss.2019.01.020

20. Bikdeli B., Madhavan M. V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020; 75 (23): 2950–2973. https://doi.org/10.1016/j.jacc.2020.04.031

21. Wang J., Hajizadeh N., Moore E. E., et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14828.

22. Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M. et al. ISTH interim guidance onrecognition and management of coagulopathy in COVID-19. Journal of Thrombosis and Haemostasis. 2020; 3: 14810. [Epub ahead of print]. https://doi.org/10.1016/j.jacc.2020.04.031

23. Bhatraju P. K., Ghassemieh B. J., Nichols M., et al. Covid-19 in critically ill patients in the Seattle region – case series. N Engl J Med 2020; 382: 2012–2022. https://doi.org/10.1056/nejmoa2004500

24. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8 (05): 475–481. https://doi.org/10.1016/s2213–2600(20)30079–5

25. Klypa T. V., Bychinina M. V., Mandel I. A., Andreichenko S. A., Minets A. I., Kolyshkina N. A., Troitsky A. V., Clinical characteristics of patients with COVID-19 admitted to the intensive care unit. Predictors of severe flow Volume. 2020; 11 (2): 200–220. https://doi.org/10.17816/clinpract34182

26. Published online April 15, 2020. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis. J Thromb Haemost. Published online April 17, 2020 https://doi.org/10.1111/jth.14850

27. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J ThrombHaemost. 2020; 18 (7): 1738–42. Yakhontov D. A. https://doi.org/10.1111/jth.14850.

28. Mahmoud B. Malas et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. Lancet 1 Dec 2020 https://doi.org/10.1016/j.eclinm.2020.100639

29. Behnood Bikdeli, Mahesh V. Madhavan, Aakriti Gupta et al.Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research. Thromboembolism. 2020; 18 (7): 1738–1742. https://doi.org/10.1055/s-0040-1713152

30. Thromb Haemost, 2020 Georg Thieme Verlag KG Stuttgart · New York. Li H., Liu L., Zhang D., et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020; 395 (10235): 1517–1520 https://doi.org/10.1016/s0140–6736(20)30920-x.

31. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans. S. Fox, A. Akmatbekov, J. Harbert [et al.]. Text (visual): unmediated Lancet Respir Med. 2020; 8: 681–686 https://doi.org/10.1016/s2213–2600(20)30243–5

32. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. C. Wu, X. Chen, Y. Cai [et al.]. Text (visual): unmediated JAMA Intern. Med. 2020; 4 (8): 934 https://doi.org/10.1001/jamainternmed.2020.0994

33. SARS, MERS, and novel coronavirus (COVID-19) epidemics, the newest and big-gest global health threats: whatlessons have we learned? N. Peeri, N. Shrestha, M. S. Rahman [et al.]. Text (visual: unmediated Int JEpidemiol. 2020; 49: 717–726 https://doi.org/10.1093/ije/dyaa033

34. The epidemiology, diagnosis, and treatment of COVID-19. P. Zhai, Y. Ding, X. Wu, J. Long [et al.]. Text (visual): unmediated Int J Antimicrob Agents. 2020; 55 (5): 105–115 https://doi.org/10.1016/j.ijantimicag.2020.105955

35. Swystun L. The role of leukocytes in thrombosis. L. Swystun, P. Liaw. Text (visual): unmediated Blood. 2016; 128: 753–762 https://doi.org/10.1182/blood-2016–05–718114

36. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital inMilan, Italy. C. Lodigiani, G. Iapichino, L. Carenzo [et al.]. Text (visual): unmediated Thromb Res. 2020; 191: 9–14 https://doi.org/10.1016/j.thromres.2020.04.024

37. Inciardi R. M., Adamo M., Lupi L., et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020; 41 (19): 1821–9. https://doi.org/10.1093/eurheartj/ehaa388.

38. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95 (7): 834–47. https://doi.org/10.1002/ajh.25829

39. Miftode R. S., Petris A. O., Onofrei A. V., et al. The Novel Perspectives Opened by ST2 in the Pandemic: A Review of Its Role in the Diagnosis and Prognosis of Patients with Heart Failure and COVID-19. Diagnostics (Basel). 2021; 11 (2): 175. https://doi.org/10.3390/diagnostics11020175

40. Gumerov R. M., Gareeva D. F., Davtyan P. A., Rakhimova R. F., Musin T. I., Zagidullin S. Z., Pushkareva A. E., Plotnikova M. R., Ishmetov V. S., Pavlov V. N., Motloch L. J., Zagidullin N. S. Serum biomarkers of cardiovascular complications in COVID-19. Russian Journal of Cardiology. 2021; 26 (2S): 4456. (In Russ.) https://doi.org/10.15829/1560–4071–2021–4456

41. Khidirova L. D., Fedoruk V. A., Vasiliev K. O. The role of a new coronavirus infection caused by the SARS-CoV-2 virusin the manifestation of multisystem inflammatory syndrome. Preventive medicine. 2021; 24 (6): 110–115. https://doi.org/10.17116/profmed202124061110

42. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39 (5): 529–539. DOI: 10.1007/s00281–017–0629-x.

43. Schrezenmeier E., Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020; 16 (3): 155–166. DOI: 10.1038/s41584–020–0372-x.

44. Maurice J. S., Lalonde T., Shitsin H. & Liu U. R. Lessons from the Past: possible options for urgent prevention and treatment of severe acute respiratory infections caused by 2019-nCoV. Chemical biochem. (2020) https://doi.org/10.1002/cbic.202000047

45. Evidence-based medicine in questions and answers: monograph. D. A. Yakhontov. Novosibirsk: LLC ‘Printing House’, 2012; 326.

46. Schein J. R., White C. M., Nelson W. W., Kluger J., Mearns E. S., Coleman C. I. Vitamin K antagonist use: evidence of the difficulty of achieving and maintaining target INR range and subsequent consequences. Thromb J 2016; 14: 14. https://doi.org/10.1186/s12959–016–0088-y

47. Bikdeli B., Madhavan M. V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol 2020. https://doi.org/10.1016/j.jacc.2020.04.031

48. Agrawal U., Raju R., Udvadia Z. F. Favipiravir: A new and emerging antiviral variant in COVID-19. Med. J. Indian Armed Forces 2020; 76: 370–376. https://doi.org/10.1016/j.mjafi.2020.08.004

49. Z. Varga, A. J Flammer, P. Steiger et al. Offline: COVID-19-bewilderment and frankness. The Lancet. 2020; 3951178 https://doi.org/10.1016/S0140–6736(20)30937–5

50. Madonov P. G., Khidirova L. D., Derisheva D. A. Neuropsychiatric features of current COVID-19 pandemic (analysis of foreign publications in 2020). Medical Alphabet. 2020; (33): 58–61. (In Russ.) https://doi.org/10.33667/2078–5631–2020–33–58–61


Review

For citations:


Khidirova L.D., Ilyinykh N.P., Madonov P.G. Thrombosis on background of COVID-19 in middle-aged people. Medical alphabet. 2022;(19):38-43. (In Russ.) https://doi.org/10.33667/2078-5631-2022-19-38-43

Views: 264


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)