Preview

Медицинский алфавит

Расширенный поиск

Тромбозы на фоне COVID-19 у лиц среднего возраста

https://doi.org/10.33667/2078-5631-2022-19-38-43

Полный текст:

Аннотация

   В данном обзоре представлены особенности коагулопатии и тромботического риска при COVID-19 у лиц среднего возраста. Показано последовательное увеличение D-димера и наличие тромбоза и ТЭЛА у тяжелобольных пациентов среднего возраста с COVID-19 при снижении других параметров свертывания крови, таких как фибриноген, тромбоциты или антитромбин, которые связаны с ДВС-синдромом. Следовательно, есть потребность в выявлении и предотвращении повышенного риска тромботических событий на ранней стадии повреждения органов, насколько это возможно. Также рассматривается применение тромболитической терапии. В настоящее время прилагаются большие усилия международных медицинских и научных сообществ, новая короновирусная инфекция COVID-19 является глобальной проблемой и прогноз для госпитализированных пациентов с COVID-19, особенно при критической форме, продолжает оставаться неблагоприятным не только для пожилых и старых пациентов, но и для лиц среднего возраста. Несмотря на то что это заболевание считается многофакторным, тромботические осложнения играют важную роль в дальнейшем прогнозе у этой категории пациентов.

Об авторах

Л. Д. Хидирова
Минздрав России
Россия

Людмила Даудовна Хидирова, д. м. н., проф.

ФГБОУ ВО «Новосибирский государственный медицинский университет»

кафедра фармакологии, клинической фармакологии и доказательной медицины

Новосибирск



Н. П. Ильиных
Минздрав России
Россия

Наталья Павловна Ильиных, студентка

VI курс

ФГБОУ ВО «Новосибирский государственный медицинский университет»

Новосибирск



П. Г. Мадонов
Минздрав России
Россия

Павел Геннадьевич Мадонов, д. м. н., проф., зав. кафедрой

ФГБОУ ВО «Новосибирский государственный медицинский университет»

кафедра фармакологии, клинической фармакологии и доказательной медицины

Новосибирск



Список литературы

1. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 2020; 18: 1324–1329. https://doi.org/10.1111/jth.14859

2. Klok F. A., Kruip M. J., van der Meer N. J., Arbous M. S., Gommers D. A., Kant K. M., Kaptein F. H., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020, 191: 145–147. https://doi.org/10.1016/j.thromres.2020.04.013

3. Adam S. S., Key N. S., Greenberg C. S. D-dimer antigen: current concepts and future prospects. Blood 2009, 113: 2878–2887 https://doi.org/10.1182/blood-2008–06–165845

4. Li Y., Zhao K., Wei H., Chen W., Wang W., Jia L., Liu Q., et al. Dynamic relationship between D-dimer and COVID-19 severity. Br J Haematol 2020. https://doi.org/10.1111/bjh.16811

5. Wang T., Chen R., Liu C., Liang W., Guan W., Tang R., Tang C., et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haemato 2020; (7): 362–363. https://doi.org/10.1016/s2352–3026(20)30109–5

6. Ñamendys-Silva S. A. Respiratory support for patients with COVID-19 infection. Lancet Respir Med 2020, 8: 18. https://doi.org/10.1016/S2213–2600(20)30110–7

7. De Wit E., van Doremalen N., Falzarano D., Munster V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14 (8): 523–534. https://doi.org/10.1038/nrmicro.2016.81

8. Zhang H., Penninger J. M., Li Y., Zhong N., Slutsky A. S. Angiotensin-converting enzyme 2 (ACE 2) as a SARS-CoV-2 receptor: molecular me chanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–590. https://doi.org/10.1007/s00134–020–05985–9

9. Ng K., Wu A., Cheng V., et al. Pulmonary artery thrombosis in a patient with severe acute respiratory syndrome. Postgrad Med J. 2005; 81 (956): 3. https://doi.org/10.1136/pgmj.2004.030049

10. Dosquet C., Weill D., Wautier J. L. Cytokines and thrombosis. J Cardiovasc Pharmacol. 1995; 25 (suppl 2): S 13–S 19. https://doi.org/10.1097/00005344–199500252–00004

11. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–847. https:// doi: 10.1111/jth.14768

12. Xu J. F., Wang L., Zhao L., et al. Risk assessment of venous thromboembolism and bleeding in COVID-19 patients. Research Sqare. 2020. https://doi.org/10.21203/rs.3.rs-18340/v1

13. Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (6): 1421–1424.

14. Klok F. A., Kruip M. J., Van der Meer N. J., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. https://doi.org/10.1016/j.thromres.2020.04.013

15. Demelo-Rodriguez P., Cervilla-Munoz E., Ordieres-Ortega L., et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020; 192: 23–26. https://doi.org/10.1016/j.thromres.2020.05.018

16. Eljilany I., Elzouki A. D-Dimer, Fibrinogen, and IL-6 in COVID-19 Patients with Sus-pected Venous Thromboembolism: A Narrative Review. Vasc Health Risk Manag. 2020 Nov 13; 16: 455–462. https://doi.org/10.2147/VHRM.S280962

17. Zhang Y., Xiao M., Zhang S., et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020; 382 (17): e38. https://doi.org/10.1056/nejmc2007575

18. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18 (5): 1094–1099. https://doi.org/10.1111/jth.14817

19. Liu Y., Mu S., Li X., Liang Y., Wang L., Ma X. Unfractionated heparin alleviates sepsis-induced acute lung injury by protecting tight junctions. J Surg Res. 2019; 6 (238): 175–185. https://doi.org/10.1016/j.jss.2019.01.020

20. Bikdeli B., Madhavan M. V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020; 75 (23): 2950–2973. https://doi.org/10.1016/j.jacc.2020.04.031

21. Wang J., Hajizadeh N., Moore E. E., et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14828.

22. Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M. et al. ISTH interim guidance onrecognition and management of coagulopathy in COVID-19. Journal of Thrombosis and Haemostasis. 2020; 3: 14810. [Epub ahead of print]. https://doi.org/10.1016/j.jacc.2020.04.031

23. Bhatraju P. K., Ghassemieh B. J., Nichols M., et al. Covid-19 in critically ill patients in the Seattle region – case series. N Engl J Med 2020; 382: 2012–2022. https://doi.org/10.1056/nejmoa2004500

24. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8 (05): 475–481. https://doi.org/10.1016/s2213–2600(20)30079–5

25. Klypa T. V., Bychinina M. V., Mandel I. A., Andreichenko S. A., Minets A. I., Kolyshkina N. A., Troitsky A. V., Clinical characteristics of patients with COVID-19 admitted to the intensive care unit. Predictors of severe flow Volume. 2020; 11 (2): 200–220. https://doi.org/10.17816/clinpract34182

26. Published online April 15, 2020. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis. J Thromb Haemost. Published online April 17, 2020 https://doi.org/10.1111/jth.14850

27. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J ThrombHaemost. 2020; 18 (7): 1738–42. Yakhontov D. A. https://doi.org/10.1111/jth.14850.

28. Mahmoud B. Malas et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. Lancet 1 Dec 2020 https://doi.org/10.1016/j.eclinm.2020.100639

29. Behnood Bikdeli, Mahesh V. Madhavan, Aakriti Gupta et al.Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research. Thromboembolism. 2020; 18 (7): 1738–1742. https://doi.org/10.1055/s-0040-1713152

30. Thromb Haemost, 2020 Georg Thieme Verlag KG Stuttgart · New York. Li H., Liu L., Zhang D., et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020; 395 (10235): 1517–1520 https://doi.org/10.1016/s0140–6736(20)30920-x.

31. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans. S. Fox, A. Akmatbekov, J. Harbert [et al.]. Text (visual): unmediated Lancet Respir Med. 2020; 8: 681–686 https://doi.org/10.1016/s2213–2600(20)30243–5

32. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. C. Wu, X. Chen, Y. Cai [et al.]. Text (visual): unmediated JAMA Intern. Med. 2020; 4 (8): 934 https://doi.org/10.1001/jamainternmed.2020.0994

33. SARS, MERS, and novel coronavirus (COVID-19) epidemics, the newest and big-gest global health threats: whatlessons have we learned? N. Peeri, N. Shrestha, M. S. Rahman [et al.]. Text (visual: unmediated Int JEpidemiol. 2020; 49: 717–726 https://doi.org/10.1093/ije/dyaa033

34. The epidemiology, diagnosis, and treatment of COVID-19. P. Zhai, Y. Ding, X. Wu, J. Long [et al.]. Text (visual): unmediated Int J Antimicrob Agents. 2020; 55 (5): 105–115 https://doi.org/10.1016/j.ijantimicag.2020.105955

35. Swystun L. The role of leukocytes in thrombosis. L. Swystun, P. Liaw. Text (visual): unmediated Blood. 2016; 128: 753–762 https://doi.org/10.1182/blood-2016–05–718114

36. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital inMilan, Italy. C. Lodigiani, G. Iapichino, L. Carenzo [et al.]. Text (visual): unmediated Thromb Res. 2020; 191: 9–14 https://doi.org/10.1016/j.thromres.2020.04.024

37. Inciardi R. M., Adamo M., Lupi L., et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020; 41 (19): 1821–9. https://doi.org/10.1093/eurheartj/ehaa388.

38. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95 (7): 834–47. https://doi.org/10.1002/ajh.25829

39. Miftode R. S., Petris A. O., Onofrei A. V., et al. The Novel Perspectives Opened by ST2 in the Pandemic: A Review of Its Role in the Diagnosis and Prognosis of Patients with Heart Failure and COVID-19. Diagnostics (Basel). 2021; 11 (2): 175. https://doi.org/10.3390/diagnostics11020175

40. Gumerov R. M., Gareeva D. F., Davtyan P. A., Rakhimova R. F., Musin T. I., Zagidullin S. Z., Pushkareva A. E., Plotnikova M. R., Ishmetov V. S., Pavlov V. N., Motloch L. J., Zagidullin N. S. Serum biomarkers of cardiovascular complications in COVID-19. Russian Journal of Cardiology. 2021; 26 (2S): 4456. (In Russ.) https://doi.org/10.15829/1560–4071–2021–4456

41. Khidirova L. D., Fedoruk V. A., Vasiliev K. O. The role of a new coronavirus infection caused by the SARS-CoV-2 virusin the manifestation of multisystem inflammatory syndrome. Preventive medicine. 2021; 24 (6): 110–115. https://doi.org/10.17116/profmed202124061110

42. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39 (5): 529–539. DOI: 10.1007/s00281–017–0629-x.

43. Schrezenmeier E., Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020; 16 (3): 155–166. DOI: 10.1038/s41584–020–0372-x.

44. Maurice J. S., Lalonde T., Shitsin H. & Liu U. R. Lessons from the Past: possible options for urgent prevention and treatment of severe acute respiratory infections caused by 2019-nCoV. Chemical biochem. (2020) https://doi.org/10.1002/cbic.202000047

45. Evidence-based medicine in questions and answers: monograph. D. A. Yakhontov. Novosibirsk: LLC ‘Printing House’, 2012; 326.

46. Schein J. R., White C. M., Nelson W. W., Kluger J., Mearns E. S., Coleman C. I. Vitamin K antagonist use: evidence of the difficulty of achieving and maintaining target INR range and subsequent consequences. Thromb J 2016; 14: 14. https://doi.org/10.1186/s12959–016–0088-y

47. Bikdeli B., Madhavan M. V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol 2020. https://doi.org/10.1016/j.jacc.2020.04.031

48. Agrawal U., Raju R., Udvadia Z. F. Favipiravir: A new and emerging antiviral variant in COVID-19. Med. J. Indian Armed Forces 2020; 76: 370–376. https://doi.org/10.1016/j.mjafi.2020.08.004

49. Z. Varga, A. J Flammer, P. Steiger et al. Offline: COVID-19-bewilderment and frankness. The Lancet. 2020; 3951178 https://doi.org/10.1016/S0140–6736(20)30937–5

50. Madonov P. G., Khidirova L. D., Derisheva D. A. Neuropsychiatric features of current COVID-19 pandemic (analysis of foreign publications in 2020). Medical Alphabet. 2020; (33): 58–61. (In Russ.) https://doi.org/10.33667/2078–5631–2020–33–58–61


Рецензия

Для цитирования:


Хидирова Л.Д., Ильиных Н.П., Мадонов П.Г. Тромбозы на фоне COVID-19 у лиц среднего возраста. Медицинский алфавит. 2022;(19):38-43. https://doi.org/10.33667/2078-5631-2022-19-38-43

For citation:


Khidirova L.D., Ilyinykh N.P., Madonov P.G. Thrombosis on background of COVID-19 in middle-aged people. Medical alphabet. 2022;(19):38-43. (In Russ.) https://doi.org/10.33667/2078-5631-2022-19-38-43

Просмотров: 109


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)