Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Омега-3 жирные кислоты как компонент нутритивно-метаболической терапии пациентов с COVID-19 и другими вирусными заболеваниями (обзор литературы)

https://doi.org/10.33667/2078-5631-2021-17-63-70

Полный текст:

Аннотация

У пациентов с вирусными заболеваниями, включая COVID - 19, недостаточность питания приводит к снижению эффективности специфического лечения, выживаемости и увеличению расходов на лечение. В соответствии с международными рекомендациями своевременная коррекция нутритивного статуса с помощью дополнения энтерального и парентерального питания включением омега-3 полиненасыщенных жирных кислот рыбьего жира (омега-3 ПНЖК – ЕРА и DHA) улучшает клинические результаты специфического противовирусного лечения. Выполнен аналитический обзор результатов исследований клинического применения омега-3 ПНЖК с целью профилактики и лечения COVID-19 и других вирусных инфекций. Включение омега-3 ПНЖК в состав клинического (энтерального и парентерального) питания способствует снижению выраженности симптомов заболевания, продолжительности пребывания в клинике и ускорению восстановления пациентов, зараженных вирусом SARS-CoV-2 и другими вирусами, а в сочетании с адекватным обеспечением макронутриентами позволяет устранить нутритивную недостаточность и улучшить клинические результаты.

Об авторах

А. В. Дмитриев
Ассоциация «Северо-Западная ассоциация парентерального и энтерального питания»
Россия

Дмитриев Александр Владимирович, д.м.н., проф.

Санкт-Петербург



И. А. Мачулина
ГБУЗ «Городская клиническая больница № 70 имени Е. О. Мухина Департамента здравоохранения города Москвы»
Россия

Мачулина Ирина Александровна, зам. главного врача по анестезиологии и реанимации.

Москва



А. Е. Шестопалов
Национальная ассоциация клинического питания и метаболизма; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Шестопалов Александр Ефимович, д.м.н., проф.

Москва



Список литературы

1. Cron R., Behrens E. M. Cytokine Storm Syndrome. 1 ed. Cham: Springer Nature Switzerland AG; Springer International Publishing (2019).

2. Tisoncik J. R., Korth M. J., Simmons C. P. et al. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev., 2012, 76: 16–32. DOI: 10.1128/MMBR.05015–11.

3. Tang Y., Liu J., Zhang D. et al. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immun., 2020, 11: 1708. DOI: 10.3389/fimmu.2020.01708.

4. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323: 1061–1069. DOI: 10.1001/jama.2020.1585.

5. Guan W. J., Ni Z. Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382: 1708–1720. DOI: 10.1056/NEJMoa2002032.

6. Chen G., Wu D., Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130: 2620–2629. DOI: 10.1101/2020.02.16.20023903.

7. Chen L., Liu H. G., Liu W. et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi., 2020, 43:203–208. DOI: 10.3760/cma.j.issn.1001–0939.2020.0005.

8. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis., 2020, DOI: 10.2139/ssrn.3541136.

9. Tan M., Liu Y., Zhou R. et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology, 2020. DOI: 10.1111/imm.13223.

10. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395: 497–506. DOI: 10.1016/S0140–6736(20)30183–5.

11. Xiong Y., Liu Y., Cao L. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes. Infect., 2020, 9: 761–770. DOI: 10.1080/22221751.2020.1747363.

12. Zhong-yong C., Wei-bin Y., Qiang W., Guo-lin L. Clinical significance of serum hs-CRP, IL-6, and PCT in diagnosis and prognosis of patients with COVID-19. Drugs Clin., 2020, 35: 417–420. DOI: 10.7501/j.issn.1674–5515.2020.03.005.

13. Guohua L., Ling L., Min H. et al. Value of various inflammatory markers combined with lymphocyte subsets on clinical diagnosis of different clinical types of COVID-19. J. Chong. Med. Univ., 2020. DOI: 10.13406/j.cnki.cyxb.002465.

14. Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J. Med. Virol., 2020. DOI: 10.1002/jmv.26232.

15. Cao X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 269–270. DOI: 10.1038/s41577–020–0308–3.

16. Zilong L., Ruyuan H., Wenyang J. et al. Clinical characteristics and immune function analysis of COVID-19. Med J. Wuhan Univ., 2020, 41: 529–532. DOI: 10.14188/j.1671–8852.2020.0126.

17. Jing X., Ming-feng H., Feng-de. Z. et al. Clinical manifestations and sero-immunological characteristics of 155 patients with COVID-19. Chin. J. Nosocomiol., 2020, 30: 2261–2265. DOI: 10.11816/cn.ni.2020–200577.

18. Li X., Xu S., Wang K. et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol., 2020, 146: 110–118. DOI: 10.1016/j.jaci.2020.04.006

19. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8: 420–422. DOI: 10.1016/S2213–2600(20)30076-X.

20. Liu J., Li S., Liu J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. E BioMedicine, 2020. https://doi.org/10.1016/j.ebiom.2020.102763.

21. Liu X., Wang R., Qu G. et al. Report on anatomy observation from patient who died on COVID-19. Fa Yi Xue Za Zhi (in Chinese) 2020, 36: 21–23. DOI: 10.12116/j.issn.1004–5619.2020.01.00.

22. Ding Y. Q., Bian X. W. Analysis of coronavirus disease-19 (COVID-19) based on SARS autopsy. Zhonghua Bing Li Xue Za Zhi. 2020, 49: 291–293. DOI: 10.3760/cma.j.cn112151–20200211–00114

23. Calder P. C. Nutrition, immunity and COVID-19. B.M.J. Nutrition, Prevention and Health, 2020, 3: e000085. DOI: 10.1136/bmjnph-2020–000085.

24. Gombart A. F., Pierre A., Maggini S. A review of micronutrients and the immune System–Working in harmony to reduce the risk of infection. Nutrients, 2020; 12: E 236. DOI: 10.3390/nu12010236.

25. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol., 2016, 14: 1002533. DOI: 10.1371/journal.pbio.1002533.

26. Sanyaolu A. O., Okorie C., Marinkovic A., Patidar R. Comorbidity and its Impact on Patients with COVID-19. SN Comp. Clin. Med., 2020, 2 (30): 1–8. DOI: 10.1007/s42399–020–00363–4.

27. Xu K, Cai H, Shen Y, et al. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49. DOI: 10.3785/j.issn.1008–9292.2020.02.02.

28. Zuo T., Zhang F., Lui G. C.Y. et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, 159: 944–955. DOI: 10.1053/j.gastro.2020.05.048.

29. Calder P. C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br. J. Clin. Pharmacol., 2013, 75: 645–662. DOI: 10.1111/j.1365–2125.2012.04374.x.

30. Calder P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta, 2015, 1851: 469–484. DOI: 10.1016/j.bbalip.2014.08.010.

31. Calder P. C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans., 2017, 45: 1105–1115. DOI: 10.1042/BST20160474.

32. Serhan C. N., Chiang N., Dalli J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin. Immunol., 2015, 27: 200–215. DOI: 10.1016/j.smim.2015.03.004.

33. Serhan C. N., Levy B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest., 2018, 128: 2657–2669. DOI: 10.1172/JCI97943.

34. Chiang N., Serhan C. N. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol. Aspects Med., 2017, 58: 114–129. DOI: 10.1016/j.mam.2017.03.005.

35. Grimminger F., Wahn H., Kramer H. J. et al. Differential influence of arachidonic vs. eicosapentaenoic acid on experimental pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol., 1995, 268: H2252–2259. https://doi.org/10.1152/ajpheart.1995.268.6.H2252

36. Breil I., Koch T., Heller A. et al. Alteration of n-3 fatty acid composition in lung tissue after short-term infusion of fish oil emulsion attenuates inflammatory vascular reaction. Crit. Care Med., 1996, 24: 1893–1902. DOI: 10.1097/00003246–199611000–00021.

37. Mancuso P., Whelan J., DeMichele S.J. et al. Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats. Crit. Care Med., 1997, 25: 1198–1206. DOI: 10.1097/00003246–199707000–00023.

38. Sane S., Baba M., Kusano C. et al. Eicosapentaenoic acid reduces pulmonary edema in endotoxemic rats. J. Surg. Res., 2000, 93: 21–27. DOI: 10.1006/jsre.2000.5960

39. Hecker M., Linder T., Ott J. et al. Immunomodulation by lipidemulsions in pulmonary inflammation: a randomized controlled trial. Crit. Care, 2015, 19: 226. DOI: 10.1186/s13054–015–0933–6.

40. Dushianthan A., Cusack R., Burgess V. A., et al. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev., 2019, 1: CD 012041. DOI: 10.1002/14651858.CD012041.pub2.

41. McClaskey E.M., Michalets E. L. Subdural hematoma after a fall in an elderly patient taking high-dose omega-3 fatty acids with warfarin and aspirin: case report and review of the literature. Pharmacotherapy, 2007; 27: 152–160. DOI: 10.1592/phco.27.1.152.

42. Gutiérrez S., Svahn S. L., Johansson M. E. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci., 2019, 20: 5028. DOI: 10.3390/ijms2020502.

43. Saifullah A., Watkins B. A., Saha C. et al. Oral fish oil supplementation raises blood omega-3 levels and lowers C-reactive protein in haemodialysis patients – a pilot study. Nephrol. Dial. Transplant., 2007, 22: 3561–3567. DOI: 10.1093/ndt/gfm422.

44. Albert C. M., Hennekens C. H., O’Donnell C.J. et al. Fish consumption and risk of sudden cardiac death. JAMA, 1998, 279: 23–28. DOI: 10.1001/jama.279.1.23.

45. Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8: 475–481. DOI: https://doi.org/10.1016/S2213–2600(20)30079–5.

46. Hathaway D., Pandav K., Patel M. et al. Omega 3 Fatty Acids and COVID-19: A Comprehensive Review. Infect. Chemother., 2020, 52 (4): 478–495. https://doi.org/10.3947/ic.2020.52.4.478.

47. Asher A., Tintle N. L., Myers M. et al. Blood omega-3 fatty acids and death from COVID-19: A Pilot Study. medRxiv, 2021, 1–13. preprint DOI: https://doi.org/10.1101/2021.01.06.21249354

48. Weill P., Plissonneau C., Legrand P. et al. May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients? Biochimie, 2020, 179: 275–280. DOI: 10.1016/j.biochi.2020.09.003.

49. Kothapalli K. S.D., Park H. G., Brenna J. T. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19. Prostaglandins, leukotrienes, and essential fatty acids, 2020, 162: 102183. DOI: 10.1016/j.plefa.2020.102183.

50. Chang J. P., Pariante C. M., Su K. P. Omega-3 fatty acids in the psychological and physiological resilience against COVID-19, Prostaglandins, leukotrienes, and essential fatty acids, 2020, 161: 102177. DOI: 10.1016/j.plefa.2020.102177.

51. Regidor P. A., Santos F. G., Rizo J. M.,. Egea F. M. Pro resolving inflammatory effects of the lipid mediators of omega 3 fatty acids and its implication in SARS COVID-19, Medical hypotheses, 2020, 145: 110340. DOI: 10.1016/j.mehy.2020.110340.

52. Rogero M. M., Leão M. C., Santana T. M. et al. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19, Free radical biology and medicine, 2020, 156: 190–199. DOI: 10.1016/j.freeradbiomed.2020.07.005

53. Berger A. A., Sherburne R., Urits I. et al. Icosapent Ethyl – A Successful Treatment for Symptomatic COVID-19 Infection. Cureus, 2020, 12: e10211. DOI: 10.7759/cureus.10211.

54. Suh W., Urits I., Viswanath O et al. Three Cases of COVID-19 Pneumonia That Responded to Icosapent Ethyl Supportive Treatment. Am. J. Case Rep., 2020, 21: e928422. DOI: 10.12659/AJCR.928422.

55. Fontes J. D., Rahman F., Lacey S. et al. Red blood cell fatty acids and biomarkers of inflammation: A cross-sectional study in a community-based cohort, Atherosclerosis, 240 (2015) 431–436. DOI: 10.1016/j.atherosclerosis.2015.03.043.

56. Langlois P. L., D’Aragon F., Hardy G., Manzanares W. Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Nutrition, 2019, 61: 84–92. DOI: 10.1016/j.nut.2018.10.026.

57. Körner A., Schlegel M., Theurer J. et al. Resolution of inflammation and sepsis survival are improved by dietary Ω-3 fatty acids. Cell Death Differ., 2018, 25: 421–431. DOI: 10.1038/cdd.2017.177.

58. Saedisomeolia A., Wood L. G., Garg M. L. et al. Anti-inflammatory effects of longchain n-3 PUFA in rhinovirus-infected cultured airway epithelial cells. Br. J. Nutr., 2009, 101: 533–540. DOI: 10.1017/S0007114508025798.

59. Wall R., Ross R. P., Fitzgerald G. F., Stanton C. Fatty acids from fish: the anti-inflammatory potential of longchain omega-3 fatty acids. Nutr. Rev., 2010, 68: 280–289. DOI: 10.1111/j.1753–4887.2010.00287.x.

60. Eslamloo K., Xue X.., Hall J. R. et al. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics, 2017, 18: 706. https://doi.org/10.1186/s12864–017–4099–2.

61. Dyall S. C., E.A.T. Michael-Titus. Neurological Benefits of Omega-3 Fatty Acids. Neuromol. Med., 2008, 10: 219–235. DOI 10.1007/s12017–008–8036-z.

62. Mozaffarian D., Wu J. H.Y. Omega-3 Fatty Acids and Cardiovascular Disease. J. Am. Coll. Cardiol., 2011, 58 (20). DOI: 10.1016/j.jacc.2011.06.063.

63. Innes J. K., Calder P. C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci., 2020, 21 (4): 1362. https://doi.org/10.3390/ijms21041362.

64. Telle-Hansen V.H., Gaundal L., Myhrstad M. C.W. Polyunsaturated Fatty Acids and Glycemic Control in Type 2 Diabetes. Nutrients, 2019, 11 (5): 1067; https://doi.org/10.3390/nu11051067

65. Jiang H., Zhang J-C., Zeng J. et al. Gut, metabolism and nutritional Support for COVID-19: Experiences from China. Burns & Trauma, 2020, 8, 1–10. tkaa048. DOI: 10.1093/burnst/tkaa048.

66. Szabó Z., Marosvölgyi T., Szabó E. et al. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease. Front. Physiol., 2020, 11: 1–5. DOI: 10.3389/fphys.2020.00752

67. Hutchinson A. N., Tingo L., Brummer R. J. The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients, 2020, 12, 2402; DOI: 10.3390/nu12082402.

68. Barazzoni R., Bischoff S. C., Krznaric Z. et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARSCoV-2 infection. Clin. Nutr., 2020, 39: 1631–1638. https://doi.org/10.1016/j.clnu.2020.03.022.

69. Calder P. C. Mechanisms of Action of (n-3) Fatty Acids. J. Nutr., 2012, 1S-8S, DOI: 10.3945/jn.111.155259.

70. Javid M. J., Zebardast J. Rescue Therapy by Intralipid in Covid-19 Pulmonary Complications: A Novel Approach. Austin J. Anesth. Analg., 2020, 8 (2): 1087.

71. Merritt R. J., Bhardwaj V., Jami M. M. Fish oil and COVID-19 thromboses. Letters to the editor, 2020, 1120, https://doi.org/10.1016/j.jvsv.2020.07.002.

72. Thibault R., Seguin P., Tamion F. et al. Nutrition of the COVID-19 patient in the intensive care unit (ICU): a practical guidance. Critical Care, BioMed Central, 2020, 24 (1): 447. DOI: 10.1186/s13054–020–03159-z.


Рецензия

Для цитирования:


Дмитриев А.В., Мачулина И.А., Шестопалов А.Е. Омега-3 жирные кислоты как компонент нутритивно-метаболической терапии пациентов с COVID-19 и другими вирусными заболеваниями (обзор литературы). Медицинский алфавит. 2021;(17):63-70. https://doi.org/10.33667/2078-5631-2021-17-63-70

For citation:


Dmitriev A.V., Machulina I.A., Shestopalov A.E. Omega-3 fatty acids as component of nutritional and metabolic treatment of patients with COVID-19 and other viral diseases (literature review). Medical alphabet. 2021;(17):63-70. (In Russ.) https://doi.org/10.33667/2078-5631-2021-17-63-70

Просмотров: 141


ISSN 2078-5631 (Print)