Different predicted values — different conclusions?
https://doi.org/10.33667/2078-5631-2021-15-22-26
Abstract
The analysis of the differences in the spirometry estimation using different predicted values systems (Clement R.F., ECSC-1993, Knudson R.J, and GLI2012) have been made. The predicted values for volume indicators (FVC and FEV1) calculated using the GLI-2012 system were higher than those of the first three systems, while the flow indicators (FEF25-75 and MEF75), on the contrary, were lower. This difference has led to a different assessment of deviation of normal when using different predicted values systems. This is especially true when the values are near the evaluated areas borders.
About the Authors
P. V. StruchkovRussian Federation
M.D., PhD
Moscow
Л. D. Kiryukhina
Russian Federation
L.D., PhD, Leading researcher, Associate Professor
St. Petersburg
D. V. Drozdov
Russian Federation
M.D., PhD, Senior Researcher
Moscow
S. P. Shchelykalina
Russian Federation
M.D., associate professor
Moscow
I. A. Manichev
Belarus
PhD in P&M, Researcher
Minsk
References
1. Pellegrino R., Viegi G., Brucasco V. et al. Interpretative strategies for lung function tests / Series ‘ATS/ERS Task Force: Standartisation of lung function testing’ // Eur. Resp. J.— 2005.— Vol. 26.— P. 948–968.
2. Guidelines for using the spirometry method. Russian Respiratory Society. Approved by the Ministry of Health of Russia in 2016. M., 2016. 36 p.
3. Kameneva M. Yu. Methodological aspects of the use of pulmonary functional tests // Medical alphabet. Modern functional diagnostics. No. 22/2017. Vol. No. 2. P. 26–31.
4. Struchkov P.V., Drozdov D.V., Lukina O.F. Spirometry. A guide for doctors. 3rd edition. Moscow: GEOTARMedia, 2020. 112 p.
5. Instructions for the use of formulas and tables of the proper values of the main spirographic indicators. Approved. Ministry of Health of the USSR 1986. R. F. Clement, A.A. Lavrushin, P.A. Ter-Pogasyan, Yu.M. Kotegov. L., 1986.
6. Quanjer P. H., Tammeling G. J., Cotes J. E. et al. Lung volumes and forced ventilatory flows. Report Working Party Standartisation of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society // Eur. Respir.J. 1993. V6, Suppl.16. P. 5–40.
7. Knudson R. J., Slatin R.C., Lebowitz M.D., Burrows B. The maximal expiratory flow-volume curve. Normal standards, variability and effects of age. // Amer.Rev. Resp.Dis., 1976, v. 113, p. 587–660
8. Quanjer P.H. et al. Multi-ethnic reference values for spirometry for the 3–95 yr age range: the global lung function 2012 equations // Eur. Resp. J. 2012. Vol. 40. No 6. P. 1324–1343.
9. D.L. Sherrill, M.D. Lebowitz, R.J. Knudson, B. Burrows. Continuous longitudinal regression equations for pulmonary function measures. Eur. Respir. J. 1992;5:452–462.
10. Guide to the Clinical Physiology of Respiration / ed. L.L. Shik, N.N. Kanaev. M.: Medicine, 1980. 374 p.
11. Quanjer P.H. et al. Grading the severity of airways obstruction: new wine in new bottles // Eur. Respir. J. 2014;43:505–512. DOI: 10.1183/09031936.00086313
12. Graham B. L., Steenbruggen I., Miller M. R. et al. Standardization of Spirometry 2019 Update An Official American Thoracic Society and European Respiratory Society Technical Statement // Amer.J. of Respiratory and Critical Care Medicine, 2019, v. 200, N 8, Oct.15, 2019.
13. Kiryukhina L. D., Struchkov P. V. Spirometry standardization: what's new in the 2019 updates. Part 1 // Medical alphabet. Modern functional diagnostics. 2020; (9) No. 1: 9–14.
14. Kiryukhina L. D., Struchkov P. V. Spirometry standardization: what's new in the 2019 updates. Part 2 // Medical alphabet. Modern functional diagnostics. 2020; (14) No. 2: 10–18.
Review
For citations:
Struchkov P.V., Kiryukhina D., Drozdov D.V., Shchelykalina S.P., Manichev I.A. Different predicted values — different conclusions? Medical alphabet. 2021;(15):22-26. (In Russ.) https://doi.org/10.33667/2078-5631-2021-15-22-26