Preview

Медицинский алфавит

Расширенный поиск

Генетические вариации митохондриальной ДНК при отсутствии признаков гипоксической недостаточности

Аннотация

Митохондриальный геном крайне вариабелен, даже при отсутствии патологических мутаций он несет в себе важные индивидуальные черты. Некоторые полиморфизмы митохондриальной ДНК закреплены наследованием на протяжении тысяч лет, они филогенетически развивались по мере расселения человечества. Несмотря на сообщения о широком распространении гетероплазмии мтДНК в здоровой популяции, до сих пор остаются вопросы: какие варианты мтДНК болезнетворные, а какие просто популяционные вариации. Распространенность патогенных вариаций мтДНК, гетероплазмии и их патогенный потенциал у здорового населения не были хорошо охарактеризованы и могут быть недооценены, особенно в современном ожидании восстановления нормальной клеточной функции за счет трансплантации функционально жизнеспособных митохондрий.

Об авторах

Н. А. Литвинова
ОСП - научно-исследовательский клинический институт педиатрии имени академика Ю. Е. Вельтищева ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Россия


В. С. Сухоруков
ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Россия


Е. А. Николаева
ОСП - научно-исследовательский клинический институт педиатрии имени академика Ю. Е. Вельтищева ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Россия


С. Б. Артемьева
ОСП - научно-исследовательский клинический институт педиатрии имени академика Ю. Е. Вельтищева ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Россия


А. С. Воронкова
ОСП - научно-исследовательский клинический институт педиатрии имени академика Ю. Е. Вельтищева ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Россия


С. Н. Щербо
ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России
Россия


Список литературы

1. Van der Giezen M., Tovar J. Degenerate mitochondria. EMBO Rep 2005; 6:6:525-530.

2. Литвинова Н. А., Воронкова А. С., Сухоруков В. С. Патогенные точечные мутации митохондриальной ДНК. // Российский вестник перинатологии и педиатрии.- 2014.- Т. 59 (2).- С. 88-93. https://elibrary. ru/item.asp?id=21672887.

3. Сухоруков В. С., Воронкова А. С., Литвинова Н.А. Клиническое значение индивидуальных особенностей митохондриальной ДНК. // Российский вестник перинатологии и педиатрии - 2015 - Т. 60 (2). - С. 1020. https://elibrary.ru/item.asp?id=23650756.

4. Hungry codons promote frameshifting in human mitochondrial ribosomes. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM Science. 2010 Jan 15; 327 (5963): 301.

5. Barrell, B.G., Bankier, A.T., and Drouin, J. 1979. A different genetic code in human mitochondria. Nature 282 (5735): 189-194.

6. Calvo S, Jain M, Xie X, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet. 2006; 38: 576-82.

7. Patrick Francis Chinnery and Gavin Hudson Mitochondrial genetics Br Med Bull. 2013 June; 106 (1): 135-159.

8. Литвинова Н. А., Воронкова А. С., Сухоруков В. С., Николаева Е. А. Тканевые особенности полиморфизмов митохондриальной ДНК. // Российский вестник перинатологии и педиатрии - 2015 - T. 60 (5). - С. 76-79.

9. Robert W. Taylor and Doug M. Turnbull Mitochondrial Dna Mutations In Human Disease. Nat Rev Genet. 2005 May; 6 (5): 389-402.

10. Calloway CD, Reynolds RL, Herrin GL, Jr, Anderson WW. The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet. 2000; 66 (4): 1384-1397. [PMC free article] [PubMed].

11. de Camargo MA, et al. No relationship found between point heteroplasmy in mitochondrial DNA control region and age range, sex and haplogroup in human hairs. Mol Biol Rep. 2011; 38 (2): 1219-1223. [PubMed]

12. Irwin JA, et al. Investigation of heteroplasmy in the human mitochondrial DNA control region: A synthesis of observations from more than 5000 global population samples. J Mol Evol. 2009; 68 (5): 516-527. [PubMed]

13. Abecasis GR, et al. 1000 Genomes Project Consortium A map of human genome variation from population-scale sequencing. Nature. 2010; 467 (7319): 1061-1073. [PMC free article] [PubMed]

14. Li M, et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet. 2010; 87 (2): 237-249. [PMC free article] [PubMed]

15. Sosa MX, et al. Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency. PLOS Comput Biol. 2012; 8 (10): e1002737. [PMC free article] [PubMed]

16. Goto H, et al. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol. 2011; 12 (6): R 59. [PMC free article][PubMed]

17. Calloway CD, Reynolds RL, Herrin GL, Jr, Anderson WW. The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet. 2000; 66 (4): 1384-1397. [PMC free article] [PubMed]

18. Sondheimer N, et al. Neutral mitochondrial heteroplasmy and the influence of aging. Hum Mol Genet. 2011; 20 (8): 1653-1659. [PMC free article] [PubMed]

19. Ross JM, et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013; 501 (7467): 412-415. [PMC free article] [PubMed]

20. Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 2013; 9 (9): e1003794. [PMC free article] [PubMed]

21. He Y, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature. 2010; 464 (7288): 610-614. [PMC free article] [PubMed]

22. Larman TC, et al. Cancer Genome Atlas Research Network Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci USA. 2012; 109 (35): 14087-14091. [PMC free article] [PubMed]

23. Kaixiong Ye, a,1 Jian Lu, a, b Fei Ma, c Alon Keinan, d and Zhenglong Gua. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Genetics Proc Natl Acad Sci USA. 2014 Jul 22; 111 (29): 10654-10659. Published online 2014 Jul 7. doi: 10.1073/pnas.1403521111

24. Zhang H, Burr S, Chinnery P. The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem. 2018 Jul 20; 62 (3): 225-234. doi: 10.1042/EBC 20170096. Print 2018 Jul2 0.

25. Stephen P. Burr, Mikael Pezet and Patrick F. Chinnery. Mitochondrial DNA Heteroplasmy and Purifying Selection in the Mammalian Female Germ Line Develop. Growth Differ. (2018) 60, 21-32 doi: 10.1111/ dgd.12420

26. Floros V, Pyle A, Dietmann S, Wei W, Tang WCW, Irie N, Payne B, Capalbo A, Noli L, Coxhead J, Hudson G, Crosier M, Strahl H, Khalaf Y, Saitou M, Ilic D, Surani MA, Chinnery PF. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol. 2018 Feb; 20 (2): 144-151. doi: 10.1038/ s41556-017-0017-8. Epub 2018 Jan 15.

27. Синев В. В., Карагодин В. П., Собенини И. А., Постнов А. Ю., Сазонова М. А., Орехов А. Н. Мутационная нагрузка митохондриального генома в различных органах и тканях человека. Патологическая физиологи и эксперементальная терапия. 2017; 61 (1), стр. 114-120.

28. George B. Stefano Richard M. Kream. Mitochondrial DNA heteroplasmy in human health and disease. Spandidos Publications. Published online on: February 4, 2016. Pages: 259-262.

29. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999 Oct; 23 (2): 147.

30. www.mitomap.org.

31. Ana Carolina P. Cruz, Adriano Ferrasa, Alysson R. Muotri, c Roberto H. Herai. Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion. 2018 Sep 13. pii: S 1567-7249 (18) 30113-2. doi: 10.1016/j.mito.2018.09.005.

32. https://ghr.nlm.nih.gov/gene.

33. AA Wani, N Sharma, YS Shouche and SA Bapat. Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene (2006) 25, 6336-6344.

34. https://www.hmtvar.uniba.it.

35. Longli Kang, Hong-Xiang Zheng, Menghan Zhang, Shi Yan, Lei Li, Lijun Liu, Kai Liu, Kang Hu, Feng Chen, Lifeng Ma, Zhendong Qin, Yi Wang, Xiaofeng Wang and Li Jinb. MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders. Sci Rep. 2016; 6: 31083.

36. Vladimir S. Sukhorukov, Anastasia S. Voronkova, Natalia A. Litvinova, Tatiana I. Baranich, Dmitry A. Kharlamov. Significance of mitochondrial individuality. Adaptation Biology and Medicine, Narosa Publishers, New Delhi - 2017.


Рецензия

Для цитирования:


Литвинова Н.А., Сухоруков В.С., Николаева Е.А., Артемьева С.Б., Воронкова А.С., Щербо С.Н. Генетические вариации митохондриальной ДНК при отсутствии признаков гипоксической недостаточности. Медицинский алфавит. 2018;2(31):45-49.

For citation:


Litvinova N.A., Sukhorukov V.S., Nikolaeva E.A., Artemyeva S.B., Voronkova A.S., Scherbo S.N. Genetic variations of mitochondrial DNA in absence of hypoxic deficiency signs. Medical alphabet. 2018;2(31):45-49. (In Russ.)

Просмотров: 364


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)