Preview

Medical alphabet

Advanced search

Impact of activity, sleep and ambient light on circadian variability of blood pressure

Abstract

24-hour variability and the parameters of blood pressure (BP) circadian rhythm, i.e. the lack of BP decrease during nocturnal hours are independent risk factors for cardiovascular adverse events. Artificial light at night (ALAN) disrupts biological clock and predisposes to the development of complex metabolic disorders. Nevertheless, the role of the physical activity and sleep on the structure of variability and parameters of the circadian blood pressure rhythm and its ultradian variability studied yet fragmentally and the research on the effect of ALAN on blood pressure is even scarcer. In this paper, we present the results of a comparative study of the role of activity, sleep and ambient light on the circadian rhythm of blood pressure. We show that ALAN not only serves as a factor of sleep disturbance, but also has an effect on blood pressure. In addition, the response of physiological parameters to light is gender-dependent. In women, the reaction of blood pressure (elevation) and body temperature (delay of decrease) on the ambient light is more pronounced. We also assessed the physiological effect of melatonin on the background of exposure to ALAN. Sleep is necessary to reduce diastolic BP and heart rate; melatonin alone is not able to reduce diastolic BP and heart rate while maintaining the effect of light, at least, with a single dosage. At the same time, 1.5 mg melatonin reduces the systolic BP for 1.5-3.5 hours. This effect is not associated with the sleep and can subsequently contribute to a decrease in blood pressure in the morning.

About the Authors

D. G. Gubin
Tyumen State Medical University
Russian Federation


D. .. Weinert
Martin Luther University
Russian Federation


S. V. Solovieva
Tyumen State Medical University
Russian Federation


A. M. Durov
Martin Luther University
Russian Federation


References

1. Smolensky M. H., Hermida R. C., Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med Rev. 2016. pii: S 1087-0792 (16) 00019-8.

2. Hermida RC, Ayala DE, Fernandez JR, et al. Circadian rhythms in blood pressure regulation and optimization of hypertension treatment with ACE inhibitor and ARB medications. Am J Hypertens. 2011. (4): 383-91.

3. Hermida RC, Ayala DE, Fernandez JR, Mojôn A. Sleep-time blood pressure: prognostic value and relevance as a therapeutic target for cardiovascular risk reduction. Chronobiol Int. 2013; 30 (1-2): 68-86.

4. Hermida RC, Ayala DE, Mojôn A, Fernandez JR. Sleep-Time Ambulatory BP Is an Independent Prognostic Marker of CKD. J Am Soc Nephrol. 2017; 28 (9): 2802-2811.

5. Губин Д. Г. Молекулярные механизмы циркадианных ритмов и принципы развития десинхроноза. Успехи физиологических наук. 2013. 4: 65-87.

6. Turek FW. Circadian clocks: Not your grandfather’s clock. Science. 2016; 354 (6315): 992-993.

7. Губин Д. Г., Губин Г. Д., Гапон Л. И. Преимущества использования хронобиологических нормативов при анализе данных амбулаторного мониторинга артериального давления. Вестник аритмологии. 2000. 16: 84-94.

8. Burnier M., Bonny O., Wuerzner G. Physiologic Control of the Circadian Variability in Blood Pressure. In: Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics. White W. (ed). 2016. Humana Press. Switzerland: 149-64.

9. Shea S. A., Hilton M. F., Hu K., Scheer F. A. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res. 2011. 108: 980-984.

10. Gubin D. G., Weinert D., Rybina S. V., Danilova L. A., Solovieva S. V., Durov A. M., Prokopiev N. Y., Ushakov P. A. Activity, Sleep and Ambient Light Have a Different Impact on Circadian Blood Pressure, Heart Rate and Body Temperature Rhythms. Chronobiology Int. 2017. 34 (5): 632-649.

11. Morris C. J., Hastings J. A., Boyd K., Krainski F., Perhonen M. A., Scheer F. A., Levine B. D. Day/ Night Variability in Blood Pressure: Influence of Posture and Physical Activity. American Journal of Hypertension. (2013). 26 (6): 822-828.

12. Touitou Y., Reinberg A., Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017;173: 94-106.

13. Zhang L., Jain M. K. Beating against the clock. Proceedings of the National Academy of Sciences of the United States of America. 2016. 113 (10): 2558-9.

14. Duffy J. F., Dijk D-J. Getting Through to Circadian Oscillators: Why Use Constant Routines? J. Biol. Rhythms. 2002. 17 (1): 4-13.

15. Cagnacci A., Cannoletta M., Renzi A., Baldassari F., Arangino S., Volpe A. Prolonged melatonin administration decreases nocturnal blood pressure in women. Am J Hypertens. 2005; 18 (12 Pt 1): 1614-1618.

16. Gubin D., Cornelissen G., Weinert D. et al. Circadian disruption and Vascular Variability Disorders (VVD) - mechanisms linking aging, disease state and Arctic shift-work: applications for chronotherapy. World Heart Journal. 2013. 5 (4): 285-306.

17. Gubin D. G., Gubin G. D., Gapon L. I., Weinert D. Daily Melatonin Administration Attenuates Age-Dependent Disturbances of Cardiovascular Rhythms. Curr Aging Sci. 2016. 9 (1): 5-13.

18. Gubin D. G., Gubin G. D., Waterhouse J., Weinert D. The circadian body temperature rhythm in the elderly: Effect of single daily melatonin dosing. Chronobiol Int. 2006. 23: 639-58.

19. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vascular Health and Risk Management. 2011; 7: 577-584.

20. Gerdin M. J., Masana M. I., Rivera-Bermudez M.A. et al. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J. 2004 (14): 1646-56.

21. Gubin D. G., Weinert D., Solovieva S. V., Durov A.M., Litvinova N. S., Danilova L. A., Prokopiev N. Y., Kartashova E. A. Melatonin attenuates effects of light-at-nighton systolic blood pressure and body temperature but does not affect diastolic blood pressure and heart rate circadian rhythms. Chronobiology Int. 2018. pending.


Review

For citations:


Gubin D.G., Weinert D..., Solovieva S.V., Durov A.M. Impact of activity, sleep and ambient light on circadian variability of blood pressure. Medical alphabet. 2018;1(3):20-23. (In Russ.)

Views: 390


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)