The role of genetic predisposition in the regulation of aggressive behavior by sex hormones
https://doi.org/10.33667/2078-5631-2025-36-61-65
Abstract
In criminal practice, the defense may be based on proof of the defendant’s insanity. Predisposition to criminal behavior may be genetically determined. Antisocial personality disorder has gender characteristics. The study of the effect of sex hormones on the propensity of individuals to antisocial and aggressive behavior revealed the role of genes encoding testosterone and estrogens, cytochrome family genes involved in the synthesis of steroid hormones. The relationship with the aggression of luteinizing and follicle-stimulating hormone genes is much less studied. In studies, the relationship of prolactin with aggression against the background of drug use was obtained. The research data revealed the role of oxytocin genes in aggressive behavior of children. Epidemiological studies indicate an important role in the impulsive aggressive behavior of the Y chromosome. However, the results obtained on the relationship of aggressive personality traits with genes regulating sex hormones are ambiguous. One of the reasons for the inconsistency of the research results may be a limited sample of the number of subjects. The complexity of regulating behavior requires models that take into account many markers.
About the Authors
N. V. OrlovaRussian Federation
Orlova Natalia V., DM Sci (habil.), prof. at Dept of Faculty Therapy of Institute of Motherhood and Childhood, Leading Researcher at the laboratory
Moscow
Tyumen
G. N. Suvorov
Russian Federation
Suvorov Georgy N., PhD Law, head of Dept of Scientific and Innovative Work, head of the Laboratory
Tyumen
References
1. Farahany NA. Neuroscience and behavioral genetics in US criminal law: an empirical analysis. J Law Biosci. 2016 Jan 14; 2 (3): 485–509. DOI: 10.1093/jlb/lsv059
2. Archer J. Does sexual selection explain human sex differences in aggression? Behav Brain Sci. 2009 Aug; 32 (3–4): 249–66; discussion 266–311. DOI: 10.1017/S0140525X09990951
3. Probst F, Golle J, Lory V, Lobmaier JS. Reactive aggression tracks within-participant changes in women’s salivary testosterone. Aggress Behav. 2018 Jul; 44 (4): 362–371. DOI: 10.1002/ab.21757. Epub 2018 Mar 12. PMID: 29527708.
4. Westberg L, Henningsson S, Landén M, Annerbrink K, Melke J. et al. Influence of androgen receptor repeat polymorphisms on personality traits in men. J Psychiatry Neurosci. 2009 May; 34 (3): 205–13. PMID: 19448851; PMCID: PMC 2674974.
5. Comings DE, Chen C, Wu S, Muhleman D. Association of the androgen receptor gene (AR) with ADHD and conduct disorder. Neuroreport. 1999 May 14; 10 (7): 1589–92. DOI: 10.1097/00001756-199905140-00036
6. Cheng D, Hong CJ, Liao DL, Tsai SJ. Association study of androgen receptor CAG repeat polymorphism and male violent criminal activity. Psychoneuroendocrinology. 2006; 31(4): 548–552. DOI: 10.1016/j.psyneuen.2005.11.004
7. Valenzuela NT, Ruiz-Pérez I, Rodríguez-Sickert C, Polo P, Muñoz-Reyes JA. et al. The Relationship between Androgen Receptor Gene Polymorphism, Aggression and Social Status in Young Men and Women. Behav Sci (Basel). 2022 Feb 10; 12 (2): 42. DOI: 10.3390/bs12020042
8. Rajender S, Pandu G, Sharma JD, Gandhi KP, Singh L. et al. Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior. Int J Legal Med. 2008 Sep; 122 (5): 367–72. DOI: 10.1007/s00414-008-0225-7
9. Comings DE, Muhleman D, Johnson JP, MacMurray JP. Parent-daughter transmission of the androgen receptor gene as an explanation of the effect of father absence on age of menarche. Child Dev. 2002 Jul-Aug; 73 (4): 1046–51. DOI: 10.1111/1467-8624.00456
10. Aluja A, García LF, Blanch A, Fibla J. Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype. Psychiatr Genet. 2011 Oct; 21 (5): 229–39. DOI: 10.1097/YPG.0b013e328345465e
11. Geniole SN, Procyshyn TL, Marley N, Ortiz TL, Bird BM. et al. Using a Psychopharmacogenetic Approach To Identify the Pathways Through Which-and the People for Whom-Testosterone Promotes Aggression. Psychol Sci. 2019 Apr; 30 (4): 481–494. DOI: 10.1177/0956797619826970
12. Lee J, Harley VR. The male fight-flight response: a result of SRY regulation of catecholamines? Bioessays. 2012 Jun;34(6):454–7. DOI: 10.1002/bies.201100159
13. Westberg L, Melke J, Landén M, Nilsson S, Baghaei F. et al. Association between a dinucleotide repeat polymorphism of the estrogen receptor alpha gene and personality traits in women. Mol Psychiatry. 2003 Jan; 8 (1): 118–22. DOI: 10.1038/sj.mp.4001192
14. Prichard ZM, Jorm AF, Mackinnon A, Easteal S. Association analysis of 15 polymorphisms within 10 candidate genes for antisocial behavioural traits. Psychiatr Genet. 2007 Oct; 17 (5): 299–303. DOI: 10.1097/YPG.0b013e32816ebc9e
15. Matsumoto Y, Suzuki A, Shibuya N, Sadahiro R, Kamata M. et al. Effect of the cytochrome P450 19 (aromatase) gene polymorphism on personality traits in healthy subjects. Behav Brain Res. 2009 Dec 14; 205 (1): 234–7. DOI: 10.1016/j.bbr.2009.06.034
16. Miodovnik A, Diplas AI, Chen J, Zhu C, Engel SM. et al. Polymorphisms in the maternal sex steroid pathway are associated with behavior problems in male offspring. Psychiatr Genet. 2012 Jun; 22 (3): 115–22. DOI: 10.1097/YPG.0b013e328351850b
17. Aluja A, Torrubia R. Hostility-aggressiveness, sensation seeking, and sex hormones in men: re-exploring their relationship. Neuropsychobiology. 2004; 50 (1): 102–7. DOI: 10.1159/000077947
18. Giotakos O, Markianos M, Vaidakis N, Christodoulou GN. Aggression, impulsivity, plasma sex hormones, and biogenic amine turnover in a forensic population of rapists. J Sex Marital Ther. 2003 May-Jun; 29 (3): 215–25. DOI: 10.1080/00926230390155113
19. Harding CF, Follett BK. Hormone changes triggered by aggression in a natural population of blackbirds. Science. 1979 Mar 2; 203 (4383): 918–20. DOI: 10.1126/science.570304
20. Hirata Y, Zai CC, Nowrouzi B, Shaikh SA, Kennedy JL. et al. Possible association between the prolactin receptor gene and callous-unemotional traits among aggressive children. Psychiatr Genet. 2016 Feb; 26 (1): 48–51. DOI: 10.1097/YPG.0000000000000108
21. Mannelli P, Patkar AA, Peindl K, Tharwani H, Gopalakrishnan R. et al. Polymorphism in the serotonin transporter gene and moderators of prolactin response to meta-chlorophenylpiperazine in African-American cocaine abusers and controls. Psychiatry Res. 2006 Nov 15; 144 (2–3): 99–108. DOI: 10.1016/j.psychres.2006.01.012
22. Malik AI, Zai CC, Abu Z, Nowrouzi B, Beitchman JH. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav. 2012 Jul; 11 (5): 545–51. DOI: 10.1111/j.1601-183X.2012.00776.x
23. Beitchman JH, Zai CC, Muir K, Berall L, Nowrouzi B. et al. Childhood aggression, callous-unemotional traits and oxytocin genes. Eur Child Adolesc Psychiatry. 2012 Mar; 21 (3): 125–32. DOI: 10.1007/s00787-012-0240-6
24. Shah SS, Ayub Q, Firasat S, Kaiser F, Mehdi SQ. Y haplogroups and aggressive behavior in a Pakistani ethnic group. Aggress Behav. 2009 Jan-Feb; 35 (1): 68–74. DOI: 10.1002/ab.20281
25. Yang C, Ba H, Cao Y, Dong G, Zhang S. et al. Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression. Brain Behav. 2017 Oct 16; 7 (11): e00855. DOI: 10.1002/brb3.855
Review
For citations:
Orlova N.V., Suvorov G.N. The role of genetic predisposition in the regulation of aggressive behavior by sex hormones. Medical alphabet. 2025;(36):61-65. (In Russ.) https://doi.org/10.33667/2078-5631-2025-36-61-65
























