Preview

Medical alphabet

Advanced search

The concept of reference intervals using the thyroid panel as an example

https://doi.org/10.33667/2078-5631-2025-22-8-13

Abstract

The review focuses on summarizing information about new approaches to the assessment of reference intervals (RI) and substantiating the relevance of their further application in clinical practice. The article considers the concept of RI using the thyroid panel as an example. The advantages and limitations of alternative methods for determining RI are discussed kits MINDRAY.

About the Authors

A. P. Roytman
Russian Medical Academy of Continuing Professional Education
Russian Federation

Roytman Alexander P., DM Sci (habil.), professor at Dept of Clinical Laboratory Diagnostics with a Course in Laboratory Immunology

Moscow



T. E. Kuznetsova
Russian Medical Academy of Continuing Professional Education; N. V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Kuznetsova Tatyana E., senior laboratory assistant at Dept of Clinical Laboratory Diagnostics with a Course of Laboratory Immunology; physician of clinical laboratory diagnostics

Moscow



A. V. Bugrov
Russian Medical Academy of Continuing Professional Education
Russian Federation

Bugrov Alexey V., PhD Med, associate professor at Dept of Clinical Laboratory Diagnostics with a Course in Laboratory Immunology

Moscow



S. A. Evgina
Association of Laboratory Specialists and Organizations «Federation of Laboratory Medicine (FLM)
Russian Federation

Evgina Svetlana A., PhD Bio, program director

Moscow



V. V. Shustov
Russian Medical Academy of Continuing Professional Education; N. V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Shustov Valery V., head of Clinical Laboratory of Yu. N. Kasatkin Clinic; physician of clinical laboratory diagnostics

Moscow



M. G. Lambakakhar
Russian Medical Academy of Continuing Professional Education
Russian Federation

Lambakahar Maria G., PhD Med, associate professor at Dept of Clinical Laboratory Diagnostics with a Course in Laboratory Immunology

Moscow



V. V. Dolgov
Russian Medical Academy of Continuing Professional Education
Russian Federation

Dolgov Vladimir V., DM Sci (habil.), professor at Dept of Clinical Laboratory Diagnostics with a Course in Laboratory Immunology

Moscow



M. A. Godkov
Russian Medical Academy of Continuing Professional Education; N. V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Godkov Mikhail A., head of Dept of Clinical Laboratory Diagnostics with a Course in Laboratory Immunology; DM Sci (habil.), head of Scientific Dept of Laboratory
Diagnostics

Moscow



References

1. GOST R 53022.3–2008 “Clinical laboratory technologies. Requirements for the quality of clinical laboratory studies. Part 3. Rules for assessing the clinical information content of laboratory tests” (approved by order of the Federal Agency for Technical Regulation and Metrology of the Russian Federation dated December

2. 18, 2008 N 557-st). IFCC, CLSI, EP28-A3c document, Defining, Establishing and Verifying Reference Intervals in the Clinical Laboratory: Approved Guideline, 3rd ed., vol. 28, No.

3. National guidelines: clinical laboratory diagnostics / edited by Dolgov V. V., Godkov M. A., Vavilova T. V. – 2nd ed., Moscow: GEOTAR-Media, 2025. – 672 p.: ill. – DOI: 10.33029/9704–8930–7-CLD-2025-1-672

4. Siegel L, Murad MH, Riley RD, Bazerbachi F, Wang Z, Chu H. A Guide to Estimating the Reference Range From a Meta-Analysis Using Aggregate or Individual Participant Data. Am J Epidemiol. 2022 Mar 24; 191 (5): 948–956. DOI: 10.1093/aje/kwac013. PMID: 35102410; PMCID: PMC 9431652. https://pubmed.ncbi.nlm.nih.gov/35102410/

5. Haeckel R & Wosniok, Werner & Streichert, Thomas. (2021). Review of potentials and limitations of indirect approaches for estimating reference limits/intervals of quantitative procedures in laboratory medicine. Journal of Laboratory Medicine. 45. 35–53. 10.1515/labmed-2020–0131. https://www.degruyterbrill.com/document/doi/10.1515/labmed-2020–0131/html

6. Ozarda Y, Sikaris K, Streichert T, Macri J; IFCC Committee on Reference intervals and Decision Limits (C-RIDL). Distinguishing reference intervals and clinical decision limits – A review by the IFCC Committee on Reference Intervals and Decision Limits. Crit Rev Clin Lab Sci. 2018 Sep; 55 (6): 420–431. DOI: 10.1080/10408363.2018.1482256. Epub 2018 Jul 26. PMID: 30047297. https://pubmed.ncbi.nlm.nih.gov/30047297/

7. Miller WG, Horowitz GL, Ceriotti F, Fleming JK, Greenberg N, Katayev A, Jones GR, Rosner W, Young IS. Reference Intervals: Strengths, Weaknesses, and Challenges. Clin Chem. 2016 Jul; 62 (7): 916–23. DOI: 10.1373/clinchem.2016.256511. Epub 2016 May 26. PMID: 27230874. https://pubmed.ncbi.nlm.nih.gov/27230874/

8. Larsen JB, Hoffmann-Lücke E, Aaslo PH, Jørgensen NR, Greibe E. Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics. 2023 Feb 16; 15 (2): 673. DOI: 10.3390/pharmaceutics15020673. PMID: 36839995; PMCID: PMC 9964937. https://pubmed.ncbi.nlm.nih.gov/36839995/

9. Ichihara K, Boyd JC; IFCC Committee on Reference Intervals and Decision Limits (C-RIDL). An appraisal of statistical procedures used in derivation of reference intervals. Clin Chem Lab Med. 2010 Nov; 48 (11): 1537–51. DOI: 10.1515/ CCLM.2010.319. PMID: 21062226. https://pubmed.ncbi.nlm.nih.gov/21062226/

10. Aarsand AK et al. The EFLM Biological Variation Database. https://biological-variation.eu/

11. Gräsbeck R, Fellman J. Normal values and statistics. Scand J Clin Lab Invest. 1968; 21 (3): 193–5. DOI: 10.3109/00365516809076984. PMID: 5708691. https://pubmed.ncbi.nlm.nih.gov/5708691/

12. Gräsbeck R. The evolution of the reference value concept. Clin Chem Lab Med. 2004; 42 (7): 692–7. DOI: 10.1515/CCLM.2004.118. PMID: 15327001. https://pubmed.ncbi.nlm.nih.gov/15327001/ https://moscow.sci-hub.ru/3942/d1452122b-350d155a08efe1aa2a85d44/10.1515@CCLM.2004.118.pdf?download=true

13. Wright EM, Royston P. Calculating reference intervals for laboratory measurements. Stat Methods Med Res. 1999 Jun; 8 (2): 93–112. DOI: 10.1177/096228029900800202. PMID: 10501648. https://pubmed.ncbi.nlm.nih.gov/10501648/

14. Jung B, Adeli K. Clinical laboratory reference intervals in pediatrics: the CALIPER initiative. Clin Biochem. 2009 Nov; 42 (16–17): 1589–95. DOI: 10.1016/j.clinbiochem.2009.06.025. Epub 2009 Jul 7. PMID: 19591815. https://pubmed.ncbi.nlm.nih.gov/19591815/

15. Ni X, Song W, Peng X, Shen Y, Peng Y, Li Q, Wang Y, Hu L, Cai Y, Shang H, Zhao M, Jiang H, Huang Y, Mu R, Chen W, Peng M, Zhang C, Zeng J, Li C, Yang H, Jiang Y, Xu J, Li G, Chen H, Xiang Y, Cao S, Guo Z, Chen D; study group of Pediatric Reference Intervals in China (PRINCE). Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study. Sci Bull (Beijing). 2018 Dec 30; 63 (24): 1626–1634. DOI: 10.1016/j.scib.2018.11.024. Epub 2018 Dec 1. PMID: 36658854. https://pubmed.ncbi.nlm.nih.gov/36658854/

16. Doyle K, Bunch DR. Reference intervals: past, present, and future. Crit Rev Clin Lab Sci. 2023 Sep; 60 (6): 466–482. DOI: 10.1080/10408363.2023.2196746. Epub 2023 Apr 10. PMID: 37036018. https://pubmed.ncbi.nlm.nih.gov/37036018/

17. Yang D, Su Z, Zhao M. Big data and reference intervals. Clin Chim Acta. 2022 Feb 15; 527: 23–32. DOI: 10.1016/j.cca.2022.01.001. Epub 2022 Jan 6. PMID: 34999059. https://pubmed.ncbi.nlm.nih.gov/34999059/

18. Coşkun A, Sandberg S, Unsal I, et al. Personalized and Population-Based Reference Intervals for 48 Common Clinical Chemistry and Hematology Measurands: A Comparative Study. Clin Chem. 2023;69(9):1009–1030. DOI: 10.1093/clinchem/hvad113 Personalized and Population-Based Reference Intervals for 48 Common Clinical Chemistry and Hematology Measurands: A Comparative Study – PubMed.

19. Качество лабораторных исследований для эффективной диагностики / В. В. Долгов, М. А. Годков, Л. П. Зенина [и др.]. – Москва: ГЭОТАР-Медиа, 2025. – 128 с. – ISBN 978-5-9704-9456-1.

20. Yan R, Peng Y, Hu L, Zhang W, Li Q, Wang Y, Peng X, Song W, Ni X. Continuous reference intervals for 21 biochemical and hematological analytes in healthy Chinese children and adolescents: The PRINCE study. Clin Biochem. 2022 Apr;102:9–18. DOI: 10.1016/j.clinbiochem.2022.01.004. Epub 2022 Jan 31. PMID: 35108586. https://pubmed.ncbi.nlm.nih.gov/35108586/

21. Evered DC, Vice PA, Green E, Appleton D. Assessment of thyroid hormone assays. J Clin Pathol. 1976;29(12):1054–1059. DOI: 10.1136/jcp.29.12.1054 Assessment of thyroid hormone assays – PubMed.

22. Anand A, Su FY, Chen TH, Chen YF, Chen YT. Ultrasensitive Quantification of Thyroid-Stimulating Hormone and Thyroxine by Nanoelectronic SnS 2 Transistor Sensors. ACS Sens. 2025;10(6):4095–4104. DOI: 10.1021/acssensors.5c00115 Ultrasensitive Quantification of Thyroid-Stimulating Hormone and Thyroxine by Nanoelectronic SnS 2 Transistor Sensors – PubMed.

23. Ayala-Moreno MR, Guerrero-Hernández J, Vergara-Castañeda A, Salazar-Aceves G, Cruz-Mercado DE. Thyroid function in pediatric population with different nutritional status. Función tiroidea en población pediátrica con diferente estado nutricional. Bol Med Hosp Infant Mex. 2018;75(5):279–286. DOI:10.24875/BMHIM.M18000036 Thyroid function in pediatric population with different nutritional status – PubMed.

24. Jansen HI, Dirks NF, Hillebrand JJ, et al. Age-Specific Reference Intervals for Thyroid-Stimulating Hormones and Free Thyroxine to Optimize Diagnosis of Thyroid Disease. Thyroid. 2024;34(11):1346–1355. DOI: 10.1089/thy.2024.0346 Age-Specific Reference Intervals for Thyroid-Stimulating Hormones and Free Thyroxine to Optimize Diagnosis of Thyroid Disease – PubMed.

25. Fu J, Wang Y, Liu Y, Song Q, Cao J, Peichang W. Reference intervals for thyroid hormones for the elderly population and their influence on the diagnosis of subclinical hypothyroidism. J Med Biochem. 2023;42(2):258–264. DOI: 10.5937/jomb0–39570 Reference intervals for thyroid hormones for the elderly population and their influence on the diagnosis of subclinical hypothyroidism – PubMed.

26. Li Q, Tang Y, Yu X, et al. Thyroid Function Reference Intervals by Age, Sex, and Race: A Cross-Sectional Study. Ann Intern Med. Published online May 6, 2025. DOI: 10.7326/ANNALS-24–01559 Thyroid Function Reference Intervals by Age, Sex, and Race: A Cross-Sectional Study – PubMed.

27. Ziegler GM, Slaughter JL, Chaudhari M, Singh H, Sánchez PJ, Bunch DR. Preterm to term infant postmenstrual age reference intervals for thyroid-stimulating hormone and free thyroxine. Pediatr Res. 2022; 91 (5): 1130–1135. DOI: 10.1038/s41390-021-01838-3 Preterm to term infant postmenstrual age reference intervals for thyroid-stimulating hormone and free thyroxine – PubMed.

28. Osinga JAJ, Derakhshan A, Palomaki GE, et al. TSH and FT4 Reference Intervals in Pregnancy: A Systematic Review and Individual Participant Data Meta-Analysis. J Clin Endocrinol Metab. 2022; 107 (10): 2925–2933. DOI: 10.1210/clinem/dgac425 TSH and FT4 Reference Intervals in Pregnancy: A Systematic Review and Individual Participant Data Meta-Analysis – PubMed.

29. Martínez Brito D, Leogrande P, Donati F, de la Torre X, Botrè F. Quantification of thyroid hormones and analogs by liquid chromatography coupled to mass spectrometry. Preliminary results in athletes and non-athletes serum samples. Drug Test Anal. 2022; 14 (8): 1438–1450. DOI: 10.1002/dta.3269 Quantification of thyroid hormones and analogs by liquid chromatography coupled to mass spectrometry. Preliminary results in athletes and non-athletes serum samples – PubMed.

30. Селиванова, А. В. Интерпретация лабораторных исследований при патологии щитовидной железы / А. В. Селиванова, В. В. Долгов. – Москва: ГЭОТАР-Медиа, 2023. – 112 с. – ISBN 978-5-9704-7686-4, DOI: 10.33029/9704–7686–4-ILT-2023-1-112 Selivanova, A. V. Interpretation of laboratory tests for thyroid pathology / A. V. Selivanova, V. V. Dolgov. – Moscow: GEOTAR-Media, 2023. – 112 p. – ISBN 978-5-9704-7686-4, DOI: 10.33029/9704–7686–4-ILT-2023-1-112

31. Harris EK, Yasaka T. On the calculation of a “reference change” for comparing two consecutive measurements. Clin Chem. 1983 Jan; 29 (1): 25–30. PMID: 6848276. https://pubmed.ncbi.nlm.nih.gov/6848276/

32. Fraser CG. Inherent biological variation and reference values. Clin Chem Lab Med. 2004; 42 (7): 758–64. DOI: 10.1515/CCLM.2004.128. PMID: 15327011. https://pubmed.ncbi.nlm.nih.gov/15327011/

33. Клинические рекомендации «Гипотиреоз», 2024. Clinical guidelines «Hypothyroidism», 2024.

34. Plebani M. Harmonization in laboratory medicine: the complete picture. Clin Chem Lab Med. 2013 Apr; 51 (4): 741–51. DOI: 10.1515/cclm-2013–0075. PMID: 23435100. https://pubmed.ncbi.nlm.nih.gov/23435100/

35. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019 Jan; 25 (1): 44–56. DOI: 10.1038/s41591-018-0300-7. Epub 2019 Jan 7. PMID: 30617339. https://pubmed.ncbi.nlm.nih.gov/30617339/.


Review

For citations:


Roytman A.P., Kuznetsova T.E., Bugrov A.V., Evgina S.A., Shustov V.V., Lambakakhar M.G., Dolgov V.V., Godkov M.A. The concept of reference intervals using the thyroid panel as an example. Medical alphabet. 2025;(22):8-13. (In Russ.) https://doi.org/10.33667/2078-5631-2025-22-8-13

Views: 214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)