

Arabinogalactan as a prebiotic: physiological effects, mechanisms of action, and clinical application potential
https://doi.org/10.33667/2078-5631-2025-19-86-93
Abstract
This literature review presents current data on the role of prebiotic fibers in the regulation of gut microbiota composition, host metabolism, and immune homeostasis. Dietary fiber is not digested in the human gastrointestinal tract, but, entering the large intestine, serves as a prebiotic substrate for symbiotic microbiota. Today, there is no doubt about the important role of symbiotic microorganisms in the normal functioning of various systems of the human body. Particular emphasis is placed on short-chain fatty acids – the principal microbial fermentation products of dietary fibers – that serve as key mediators between symbiotic microbiota and host immune responses. The mechanisms by which these metabolites modulate immune cell populations, including T lymphocytes, macrophages, dendritic cells, and NK cells, are described, alongside their effects on intestinal barrier function and systemic immunity. Special focus is given to larch arabinogalactan, a well-studied natural polysaccharide with established prebiotic and immunomodulatory properties. Its structural characteristics, metabolic fate in the colon, biological activity, and clinical relevance are reviewed. The article also summarizes findings from Russian and international studies supporting the safety and efficacy of arabinogalactan and its potential applications in functional nutrition, preventive medicine, and pharmaceutical formulations.
About the Author
E. A. BurlyaevaRussian Federation
Burlyaeva Ekaterina A., PhD Med, head of Consultative and Diagnostic Center “Healthy and Sports Nutrition”, associate professor at Dept of Nutrition Hygiene and Toxicology, head of the Laboratory of Extreme Nutrition and Applied Food Technologies
Moscow
References
1. Kim CH. Immune regulation by microbiome metabolites. Immunology 2018 Jun; 154 (2): 220–229. DOI: 10.1111/imm.12930
2. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019 Mar 9; 8 (3): 92. DOI: 10.3390/foods8030092
3. Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Spiegelman D, Willett WC. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr. 2000 Oct; 72 (4): 912–21. DOI: 10.1093/ajcn/72.4.912. PMID: 11010931.
4. Van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med. 2002 Feb 5; 136 (3): 201–9. DOI: 10.7326/0003‑4819‑136‑3‑200202050‑00008
5. Strate LL, Keeley BR, Cao Y, Wu K, Giovannucci EL, Chan AT. Western Dietary Pattern Increases, and Prudent Dietary Pattern Decreases, Risk of Incident Diverticulitis in a Prospective Cohort Study. Gastroenterology. 2017 Apr; 152 (5): 1023–1030.e2. DOI: 10.1053/j.gastro.2016.12.038
6. Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019; 51: 794–811. DOI: 10.1016/j.immuni.2019.09.020
7. Larrosa S, Luque V, Grote V, Closa-Monasterolo R, Ferré N, Koletzko B, Verduci E, Gruszfeld D, Xhonneux A, Escribano J. Fibre Intake Is Associated with Cardiovascular Health in European Children. Nutrients. 2021; 13 (1): 12. DOI: 10.3390/nu13010012
8. Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol. Clin. N. Am. 2017; 46: 77–89. DOI: 10.1016/j.gtc.2016.09.007
9. Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T, Zielke C, Ulmius M, Nilsson L, Butterworth PJ, Ellis PR, Shewry PR. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017 Jan 22; 57 (2): 237–253. DOI: 10.1080/10408398.2014.939263
10. O’Grady J, O’Connor EM, Shanahan F. Review article: dietary fibre in the era of microbiome science. Aliment Pharmacol Ther. 2019 Mar; 49 (5): 506–515. DOI: 10.1111/apt.15129
11. McRorie JW Jr, McKeown NM. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J Acad Nutr Diet. 2017 Feb; 117 (2): 251–264. DOI: 10.1016/j.jand.2016.09.021
12. Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021 Feb; 18 (2): 101–116. DOI: 10.1038/s41575‑020‑00375‑4
13. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016 Jun 2; 165 (6): 1332–1345. DOI: 10.1016/j.cell.2016.05.041
14. Tandon D, Haque MM, Gote M, Jain M, Bhaduri A, Dubey AK, Mande SS. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci Rep. 2019 Apr 2; 9 (1): 5473. DOI: 10.1038/s41598‑019‑41837‑3
15. Yang, XD., Wang, LK., Wu, HY, Jiao L. Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol. 2018; 18: 177. DOI: 10.1186/s12871‑018‑0642‑1
16. Song X, Zhong L, Lyu N, Liu F, Li B, Hao Y, Xue Y, Li J, Feng Y, Ma Y, Hu Y, Zhu B. Inulin Can Alleviate Metabolism Disorders in ob/ob Mice by Partially Restoring Leptin-related Pathways Mediated by Gut Microbiota. Genomics Proteomics Bioinformatics. 2019 Feb; 17 (1): 64–75. DOI: 10.1016/j.gpb.2019.03.001
17. Holscher HD, Bauer LL, Gourineni V, Pelkman CL, Fahey GC Jr, Swanson KS. Agave Inulin Supplementation Affects the Fecal Microbiota of Healthy Adults Participating in a Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. J Nutr. 2015 Sep; 145 (9): 2025–32. DOI: 10.3945/jn.115.217331
18. Shen RL, Dang XY, Dong JL, Hu XZ. Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. J Agric Food Chem. 2012 Nov 14; 60 (45): 11301–8. DOI: 10.1021/jf302824h
19. Mao G, Li S, Orfila C, Shen X, Zhou S, Linhardt RJ, Ye X, Chen S. Depolymerized RG-Ienriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food Funct. 2019 Dec 11; 10 (12): 7828–7843. DOI: 10.1039/c9fo01534e
20. Beukema M, Akkerman R, Jermendi É, Koster T, Laskewitz A, Kong C, Schols HA, Faas MM, de Vos P. Pectins that Structurally Differ in the Distribution of Methyl-Esters Attenuate Citrobacter rodentium-Induced Colitis. Mol Nutr Food Res. 2021 Oct; 65 (19): e2100346. DOI: 10.1002/mnfr.202100346
21. Calame W, Weseler AR, Viebke C, Flynn C, Siemensma AD. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br J Nutr. 2008 Dec; 100 (6): 1269–75. DOI: 10.1017/S0007114508981447
22. Rawi MH, Abdullah A, Ismail A, Sarbini SR. Manipulation of Gut Microbiota Using Acacia Gum Polysaccharide. ACS Omega. 2021 Jul 2; 6 (28): 17782–17797. DOI: 10.1021/acsomega.1c00302
23. Guan Z-W, Yu E-Z, Feng Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules. 2021; 26 (22): 6802. DOI: 10.3390/molecules26226802
24. Singh RP. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl Microbiol Biotechnol. 2019 Sep; 103 (18): 7287–7315. DOI: 10.1007/s00253-019-10012-z
25. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012 Jul-Aug; 3 (4): 289–306. DOI: 10.4161/gmic.19897
26. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019 Aug; 16 (8): 461–478.
27. Van der Hee B, Wells JM. Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends Microbiol. 2021 Aug; 29 (8): 700–712. DOI: 10.1016/j.tim.2021.02.001
28. Hu J, Lin S, Zheng B, Cheung PCK. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 2018 May 24; 58 (8): 1243–1249. DOI: 10.1080/10408398.2016.1245650
29. Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol. 2021 May; 18 (5): 1161–1171. DOI: 10.1038/s41423‑020‑00625‑0
30. Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal. 2023 Aug 18; 21 (1): 212. DOI: 10.1186/s12964‑023‑01219‑9
31. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004 Sep; 54 (Pt 5): 1469–1476. DOI: 10.1099/ijs.0.02873-0
32. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014 Oct; 12 (10): 661–72. DOI: 10.1038/nrmicro3344
33. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010 Feb; 12 (2): 304–14. DOI: 10.1111/j.1462–2920.2009.02066.x
34. Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7 (3): 189–200. DOI: 10.1080/19490976.2015.1134082
35. Ze X., Duncan S.H., Louis P., Flint H.J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012; 6 (8): 1535–1543. DOI: 10.1038/ismej.2012.4
36. So D., Whelan K., Rossi M., Morrison M., Holtmann G., Kelly J.T., Shanahan E.R., Staudacher H.M., Campbell K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am.J. Clin. Nutr. 2018; 107 (6): 965–983. DOI: 10.1093/ajcn/nqy041
37. Kim C.H., Park J., Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammationЭ. Immune Netw. 2014; 14 (6): 277–288. DOI: 10.4110/in.2014.14.6.277
38. Kim M., Kim C. H. Regulation of humoral immunity by gut microbial products. Gut Microbes. 2017; 8 (4): 392–399. DOI: 10.1080/19490976.2017.1299311
39. Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015; 7 (4): 2839–2849. DOI: 10.3390/nu7042839
40. Miller T.L., Wolin M.J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 1996; 62 (5): 1589–1592. DOI: 10.1128/aem.62.5.1589-1592.1996
41. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free fatty acid receptors in health and disease. Physiol. Rev. 2020; 100 (1): 171–210. DOI: 10.1152/physrev.00041.2018
42. Offermanns S. Hydroxy-carboxylic acid receptor actions in metabolism // Trends Endocrinol. Metab. 2017; 28 (3): 227–236. DOI: 10.1016/j.tem.2016.11.007
43. He J., Zhang P., Shen L., Niu L., Tan Y., Chen L., Zhao Y., Bai L., Hao X., Li X., Zhang S., Zhu L. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 2020; 21 (17): Article ID6356. DOI: 10.3390/ijms21176356
44. Milligan G., Stoddart L.A., Smith N.J. Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3. Br.J. Pharmacol. 2009; 158 (1): 146–153. DOI: 10.1111/j.1476-5381.2009.00421.x
45. Saeidy S., Petera B., Pierre G., Fenoradosoa T. A., Djomdi D., Michaud P., Delattre C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol. Adv. 2021; 53: Article ID107771. DOI: 10.1016/j.biotechadv.2021.107771
46. Seifert G.J., Roberts K. The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 2007; 58: 137–161. DOI: 10.1146/annurev.arplant.58.032806.103801
47. D’Adamo P. Larch arabinogalactan. J. Naturopath. Med. 1996; 6: 33–37.
48. Dion C., Chappuis E., Ripoll C. Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr. Metab. (Lond.). 2016; 13: 28. DOI: 10.1186/s12986-016-0086-x
49. Voragen A.G.J., Coenen G.J., Verhoef R.P., Schols H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009; 20: 263–275. DOI: 10.1007/s11224-009-9442-z
50. Carpita N., McCann M. The cell wall // In: Buchanan B.B., Gruissem W., Jones R.L. (Eds.). Biochemistry and Molecular Biology of Plants. New Jersey: Wiley Blackwell, 2015. P. 52–108.
51. Clarke A.E., Anderson R.L., Stone B.A. Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry. 1979; 18 (4): 521–540. DOI: 10.1016/S0031-9422 (00) 84255‑7
52. Sinha A.K., Kumar V., Makkar H.P.S., De Boeck G., Becker K. Non-starch polysaccharides and their role in fish nutrition – A review. Food Chem. 2011; 127 (4): 1409–1426. DOI: 10.1016/j.foodchem.2011.02.042
53. Showalter A.M. Structure and function of plant cell wall proteins. Plant Cell. 1993; 5 (1): 9–23. DOI: 10.1105/tpc.5.1.9
54. Ellis M., Egelund J., Schultz C.J., Bacic A. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 2010; 153 (2): 403–419. DOI: 10.1104/pp.110.156000
55. Grube B., Stier H., Riede L., Gruenwald J. Tolerability of a proprietary larch arabinogalactan extract: a randomized, double-blind, placebo-controlled clinical trial in healthy subjects. Food Nutr. Sci. 2012; 3 (11): 1533–1538. DOI: 10.4236/fns.2012.311200
56. Goellner E.M., Utermoehlen J., Kramer R., Classen B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 2011; 86 (): P. 1739–1744. DOI: 10.1016/j.carbpol.2011.07.006
57. Tsivileva O., Pozdnyakov A., Ivanova A. Polymer nanocomposites of selenium biofabricated using fungi. Molecules. 2021; 26 (12): Article ID3657. DOI: 10.3390/molecules26123657
58. Nazareth M., Kennedy C., Bhatia V. Studies on larch arabinogalactan I.J. Pharm. Sci. 1961; 50 (7): 560–563.
59. Semerikov V.L., Lascoux M. Genetic relationship among Eurasian and American Larix species based on allozymes. Heredity (Edinb). 1999; 83 (Pt 1): 62–70. DOI: 10.1038/sj.hdy.6885310
60. Vince A.J., McNeil N.I., Wager J.D., Wrong O.M. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. Br.J. Nutr. 1990; 63 (1): P. 17–26. DOI: 10.1079/bjn19900088
61. Prynne C.J., Southgate D.A.T. The effects of a supplement of dietary fiber on faecal excretion by human subjects. Br.J. Nutr. 1979; 41 (3): 495–503. DOI: 10.1079/BJN19790064
62. Macfarlane S., Macfarlane G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003; 62 (1): 67–72. DOI: 10.1079/PNS2002207
63. Kim L.S., Burkholder P.M., Waters R.F. Effects of low-dose larch arabinogalactan from Larix occidentalis: a randomized, double-blind, placebo-controlled pilot study. Complement. Health Pract. Rev. 2002; 7 (3): 221–229. DOI: 10.1177/153321010200700305
64. Yamashita A., Ohtsuka H., Maeda H. Intestinal absorption and urinary excretion of antitumor peptidomannan KS‑2 after oral administration in rats.Immunopharmacology. 1983; 5 (3): 209–220.
65. Terpend K., Possemiers S., Daguet D., Marzorati M. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Environ. Microbiol. Rep. 2013; 5 (4): 595–603. DOI: 10.1111/1758-2229.12056
66. Aguirre M., Bussolo de Souza C., Venema K. The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLoS One. 2016; 11 (7): e0159236. DOI: 10.1371/journal.pone.0159236
67. Harris S., Powers S., Monteagudo-Mera A., Kosik O., Lovegrove A., Shewry P., Charalampopoulos D. Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. Eur. J. Nutr. 2020; 59 (1): 297–307. DOI: 10.1007/s00394‑019‑01908‑7
68. Daguet D., Pinheiro I., Verhelst A., Possemiers S., Marzorati M. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the Simulator of the Human Intestinal Microbial Ecosystem. J. Funct. Foods. 2016; (20): 369–379. DOI: 10.1016/j.jff.2015.11.005
69. Li S., Hu J., Yao H., Geng F., Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit. Rev. Food Sci. Nutr. 2023; 63 (19): 3653–3663. DOI: 10.1080/10408398.2021.1992605
70. Babkin V. A., Medvedeva E. N., Sambueva Z. G., Khobrakova V. B., Neverova N. A., Suyuncheva B.O., Tatsiy A.A. Medical and biological properties of functional food products with larch arabinogalactan. News of universities. Applied chemistry and biotechnology. 2012; 2 (3): 85–89. (In Russ.).
71. Conesa C., Bellés A., Grasa L., Sánchez L. The role of lactoferrin in intestinal health. Pharmaceutics. 2023; 15 (6): Article ID1569. DOI: 10.3390/pharmaceutics15061569
72. Cao X., Ren Y., Lu Q., Wang K., Wu Y., Wang Y., Zhang Y., Cui X.S., Yang Z., Chen Z. Lactoferrin: a glycoprotein that plays an active role in human health. Front. Nutr. 2023; 9: Article ID1018336. DOI 10.3389/fnut.2022.1018336
73. Tunik T.V., Nemchenko U.M., Ganenko T.V. [et al.] Synthesis and spectral characterization of new biodegradable arabinogalactan derivatives for diagnostics and therapy. Bulletin of the Russian Academy of Sciences. Physical Series. 2019; 83 (3): 408–414. (In Russ.). DOI: 10.1134/S0367676519030268
74. Alekseenko S.N. Antioxidant properties of arabinogalactan under cold stress conditions: author’s abstract. dis. … candidate of biological sciences. Barnaul, 2006. 23 p. (In Russ.).
75. Konovalova A. Yu., Butorina N.V. Arabinogalactan of Siberian larch, its unique properties and application. Bulletin of IrSAU. 2019; 3 (83): 127–132. (In Russ.).
76. Reshetnik E.I., Utochkina E.A., Pakusina A.P. Study of the possibility of enriching fermented milk products with the food additive «Lavitol-arabinogalactan». Equipment and technology of food production. 2010; 2 (17). (In Russ.).
Review
For citations:
Burlyaeva E.A. Arabinogalactan as a prebiotic: physiological effects, mechanisms of action, and clinical application potential. Medical alphabet. 2025;1(19):86-93. (In Russ.) https://doi.org/10.33667/2078-5631-2025-19-86-93